Керамический кирпич что это: Керамический кирпич – что это такое? Процесс кладки керамического кирпича

Содержание

Керамический кирпич — технические характеристики, размеры, виды, сравнения + Видео

Кирпичи из обожженной глины используются в строительстве с давних времен, а здания из этого материала отличаются завидной прочностью и долговечностью. Керамический кирпич, технические характеристики которого находятся на высоком уровне, производится из некоторых видов глины. Эксплуатационные свойства его определяются качеством сырья и точным соблюдением технологии производства.

 

Состав, производство и разновидности керамического кирпича

Изготовление данного вида строительного материала представляет собой сложный процесс, состоящий из нескольких этапов. В настоящее время применяются две технологии производства керамического кирпича.

1. Пластический метод предполагает формование блока из глиняной массы с содержанием воды порядка 17-30 %. Для реализации этого процесса используется ленточный пресс, затем кирпич сушится в специально оборудованной камере или под навесом. На последнем этапе производится его обжиг в печи или в туннелях, остывшие изделия помещаются на склад.

2. Технология полусухого прессования. Исходная масса при этом имеет влажность в пределах 8 -10 %. Процесс формования блока осуществляется путем прессования под высоким давлением до 15 МПа.

Производство кирпича осуществляется в строгом соответствии с национальными стандартами ГОСТ 7484-78 и ГОСТ 530-95. В процессе подготовки массы используются глинообрабатывающие машины вальцы, бегуны и глиномялки. Формование кирпича на современных предприятиях происходит на высокопроизводительных ленточных прессах. Однородная структура блоков и отсутствие пустот достигается за счет использования вибростендов.

Сушка сырого кирпича осуществляется камерным или туннельным способом. В первом случае партия изделий загружается в специально оборудованное помещение, где температура и влажность изменяются по заданному алгоритму. Во втором варианте вагонетки с сырцом последовательно проводятся через зоны с разными параметрами микроклимата.

Обжиг кирпича происходит в специальных печах при определенных условиях. Температурный режим подбирается в зависимости от состава сырья и его максимальные значения варьируются в пределах от 950 до 1050 °С. Время обжига подбирается с таким расчетом, чтобы по завершении процесса массовая часть стекловидной фазы в структуре кирпича достигала 8 – 10 %. Такой показатель обеспечивает максимальную механическую прочность изделию.

Сырьем для производства кирпича служит глина мелкой фракции, которая добывается в карьерах открытым способом с применением одноковшовых или роторных экскаваторов. Обеспечить надлежащее качество изделий возможно только при использовании материла с однородным составом минералов. Заводы для изготовления кирпича строятся вблизи месторождений для снижения транспортных расходов и надежного снабжения предприятия минеральным сырьем.

Основные виды кирпича керамического различаются по назначению и подразделяются на рядовой (другие названия: строительный или обычный) и лицевой.

Рядовой керамический кирпич.

Облицовочный керамический кирпич.

Лицевой в зависимости от технологического исполнения может быть нескольких типов:

  • фасадный;
  • глазурованный;
  • фасонный;
  • фигурный;
  • ангобированный.

Керамический кирпич, кроме того, может быть монолитным или пустотелым, а его поверхности ложковые и тычковые делаются гладкими или рифлеными. При этом изделия одного вида часто сочетают несколько признаков, так рядовой блок изготавливается полнотелым или с полостями. Кладка печей или каминов осуществляется из специального огнестойкого (шамотного) кирпича, а для мощения дорожек применяется его специальный вид – клинкерный.

Керамический кирпич и его структура.

Плотность керамического кирпича

Физико-химические свойства и технические параметры изделия во многом зависят от внутренней структуры. Одним из показателей, наглядно характеризующих названные качества керамического кирпича, является плотность. Она напрямую зависит от фракционного состава сырья, разновидности и пористости строительного кирпича.

Данные о плотности и некоторых других показателях кирпича керамического приведены в таблице:








Разновидность кирпичаПлотность средняяПористостьМарка прочностиМорозо-
стойкость
кг/м3%
Рядовой полнотелый1600 — 19008 75 -30015 — 50 
Рядовой пустотелый1000 — 14506 — 8 75 — 30015 — 50 
Лицевой1300 — 14506 — 14 75 — 250 25 — 75
Лицевой ангобированный1300 — 14506 — 14 75 — 250 25 — 75
Клинкерный1900 — 21005 400 — 1000 50 -100
Шамотный1700 — 1900  8 75 — 250 15 — 50

Плотность керамического кирпича определяет его класс, который обозначается числовым кодом в пределах от 0,8 до 2,4. Приведенный показатель обозначает вес одного кубического метра строительного материала, выраженный в тоннах. Всего существует шесть классов изделий, введение данного показателя существенно упрощает учет и делопроизводство в строительной отрасли.

Знание такого показателя, как плотность необходимо для проведения расчетно-проектных работ и определения предельных нагрузок на фундаменты и несущие элементы здания. Однородная структура кирпича обеспечивает ему, с одной стороны, высокую механическую прочность, с другой — низкие теплоизоляционные свойства. В случае применения для возведения здания монолитного кирпича следует принимать дополнительные меры по утеплению стен.

Пустотелость

В целях снижения массы изделия и его теплопроводности в нем оставляются полости разной формы. Пустотелым может быть как рядовой, так и облицовочный керамический кирпич. Форма и глубина отверстий задается технологией и может быть самой разной: круглой, щелевидной или прямоугольной. Пустоты в теле изделия располагаются вертикально или горизонтально, в некоторых разновидностях они делаются сквозными в других закрытыми с одной из сторон.

Направление отверстий по отношению к плоскости нагрузки оказывает заметное влияние на показатель механической прочности. Так, кирпич с горизонтальными пустотами нельзя использовать при кладке несущих стен, возможно его разрушение под действием массы строительной конструкции. При изготовлении пустотелых блоков экономиться до 13 % сырья, что снижает их стоимость и делает более доступными.

Улучшения теплотехнических характеристик кирпича возможно путем повышения его пористости. Для этого в сырую смесь добавляют определенное количество шихты: мелко нарезанной соломы, торфа или опилок. Включения в процессе обжига выгорают и в теле образуются поры, заполненные сухим воздухом. Это обстоятельство оказывает значительное влияние на теплопроводность строительного материала.

Полнотелый керамический кирпич.

 Пустотелый керамический кирпич с пустотами прямоугольной формы.

 Пустотелый керамический кирпич с пустотами прямоугольной формы.

Пустотелый керамический кирпич с круглыми полостями по центру.

Теплопроводность керамического кирпича

Физические свойства керамического кирпича в значительной мере зависят от его внутренней структуры. Теплоизоляционные возможности изделия характеризуются коэффициентом теплопроводности. Его значение показывает, какое количество тепла необходимо для изменения температуры воздуха на 1°C при толщине стены в 1 м. Коэффициент теплопроводности используется в процессе проектирования здания при проведении расчетов толщины наружных стен.

Наблюдается прямая зависимость между плотностью керамического кирпича и его теплоизолирующими свойствами.

В соответствии с данным показателем изделия могут быть отнесены к одной из пяти групп по теплопроводности:

Полнотелый керамический кирпич теплоизоляционные характеристики, которого сравнительно невысокие используется обычно для возведения несущих конструкций. Для стен сложенных из такого материала необходимо дополнительное утепление. Применение пустотелых или щелевых изделий позволяет в значительной мере уменьшить толщину ограждающих конструкции в малоэтажных строениях. Наличие сухого воздуха в пустотах существенно снижает потери тепловой энергии сквозь стены.

Влагопоглощение

Наличие пор в керамическом кирпиче может способствовать проникновению воды и паров в его структуру. Коэффициент влагопоглощения зависит от многих факторов и первую очередь от плотности и некоторых других характеристик материала. Для полнотелых изделий величина его колеблется в пределах от 6 до 14 %, что является довольно низким показателем. Это положительно сказывается на прочностных и теплоизолирующих характеристиках кирпича.

Сохранность кирпичных зданий и сооружений напрямую зависит от устойчивости отопления. Снижение температуры внутри помещения до уровня уличной способствует проникновению влаги в поры и накоплению в них воды. Кристаллизация ее при замерзании вызывает образование напряжений и микротрещин, которые постепенно разрушают материал строительных конструкций. Напрямую со способностью к влагопоглощению связан такой показатель, как паропроницаемость.

Паропроницаемость

В любом обитаемом помещении влажность воздуха повышается вследствие жизнедеятельности человека. В регулировании этого параметра участвуют кирпичные стены, которые способны активно поглощать и отдавать пары в окружающую среду. Данный показатель для керамического кирпича находится на уровне 0,14 — 0,17 Мг/(м*ч*Па) и этого достаточно для создания комфортного микроклимата в квартире, доме или офисе.

Паропроницаемость материала определяется специальным коэффициентом. Данный показатель характеризует плотность проникающего потока через поверхность площадью в 1 кв. м в течение одного часа.

Для сравнения в таблице приведены коэффициенты паропроницаемости для разных материалов:

Морозостойкость

Керамический кирпич широко используется при возведении зданий в разных климатических зонах нашей страны. Способность материала противостоять низким температурам называется морозостойкостью. В соответствии с национальным стандартом количественное выражение данного показателя определяется циклами. По сути, это количество лет, которые способна выстоять правильно возведенная стена.

Морозостойкость керамического кирпича указывается в виде буквенно-числового кода от 50 F до 100 F. Это означает, что при правильном выполнении кладки и постоянном отоплении в зимний период срок эксплуатации здания составит от 50 до 100 лет. Керамический кирпич отличается высокой стойкостью к внешним воздействиям и экстремальным колебаниям температур.

Огнестойкость

Пожарная безопасность зданий определяется способностью строительных материалов противостоять воздействию высоких температур и открытого пламени. Керамический кирпич относится к негорючим строительным материалам, а его огнестойкость зависит от вида. Данный показатель определяется временем, которое способна выдержать стенка минимальной толщины до начала ее разрушения.

Керамический кирпич имеет максимальную огнестойкость среди других строительных материалов свыше 5 часов. Для сравнения железобетон способен противостоять огню не более 2 часов, а металлоконструкции менее 30 минут. Важным параметром стойкости материала к огню является максимальная температура, которую он может выдержать. Для рядового кирпича она составляет 1400 °C, а для шамотного или клинкерного превышает 1600 °C.

Звукоизоляция

Данный строительный материал отличается способностью гасить акустические колебания в широком диапазоне частот. Звукоизолирующие свойства керамического кирпича соответствуют требованиям СНиП 23-03-2003, а также ГОСТ 12.1.023-80 , ГОСТ 27296-87, ГОСТ 30691-2001, ГОСТ 31295.2-2005 и ГОСТ Р 53187-2008. Керамические кирпичи превосходно гасят акустические колебания.

Керамический кирпич рекомендуется специалистами для возведения жилых, общественных и промышленных зданий. Изделия могут быть использованы для строительства следующих помещений:

  • звукоизолирующих перегородок;
  • специальных кабин для наблюдения и дистанционного управления технологическими процессами;
  • акустических экранов (экранов).

Показатель звукоизоляции керамического кирпича учитывается при проведении акустических расчетов зданий и отдельных помещений. При этом принимается во внимании уровень звуковой мощности и расположение источников излучения. Стенка из пустотелого керамического кирпича имеет лучшие характеристики по данному параметру, нежели аналогичное сооружение из блоков с монолитной структурой.

Однако устройство толстых кирпичных стен с целью увеличения звукоизоляции не очень эффективно. Все потому, что при увеличении толщины стены в два раза уровень звукоизоляции увеличивается всего на несколько децибел.

Экологичность керамики

В настоящее время большое внимание уделяют влиянию материалов на здоровье человека и окружающую среду. Керамический кирпич является изделием, которое изготовленного из природного сырья: глины путем высокотемпературного обжига. Данный материал не выделяет вредных и отравляющих веществ в процессе эксплуатации жилых и производственных зданий и строений.

Кирпич керамический рекомендован для возведения практических всех видов сооружений:

  • детские дошкольные, учебные и лечебные заведения;
  • малоэтажные и многоквартирные дома для круглогодичного проживания;
  • учреждения общественного питания;
  • производственные помещения и многое другое.

В отношении экологичности данный материал способен конкурировать с натуральной древесиной и природным камнем. В помещениях, построенных из керамического кирпича, образуется здоровая среда, безопасная для обитания, здоровья и детей, и взрослых.

Размеры и точность геометрии

Производители строительных материалов предлагают обширную номенклатуру блоков разных видов. Всего промышленность выпускает почти пять типоразмеров керамического кирпича следующих форматов:

  • нормальный или одинарный;
  • «Евро»;
  • утолщенный;
  • модульный одинарный;
  • утолщенный с горизонтальными отверстиями.

Размеры кирпича керамического определяются требованиями национального ГОСТ 530-2007, который соответствует европейскому стандарту ЕН 771-1:2003. Данные для удобства использования сведены в таблицу:






Наименования изделияОбозначениеДлина, ммШирина, ммТолщина, мм
Рядовой или одинарныйКО25012065
ЕвроКЕ2508565
УтолщенныйКУ25012088
Одинарный модульныйКМ28813865
Утолщенный с горизонтальными пустотамиКУГ25012088

Стандарт жестко устанавливает предельные отклонения от номинальных размеров изделия. По длине керамический кирпич не должен отличаться от эталонного значения более чем на 4 мм, по ширине — 3 мм и по толщине – 2 мм. Допустимая погрешность изготовления по углу между перпендикулярными гранями составляет не более 3 мм. Такие требования к точности изделий дают возможность производить кладку крупных строительных конструкций с незначительными отклонениями.

Стандарт допускает изготовление керамического кирпича с иными номинальными размерами, которые не указаны в таблице. Такие изделия выпускаются по специальному заказу и при согласовании параметров между клиентом и производителем. При этом требования к точности линейных размеров и геометрии блока сохраняются в полном объеме.

Специальные виды керамического кирпича

Описываемый строительный материал широко используется для возведения конструкций самого разнообразного назначения. Специальные виды керамического кирпича применяются для кладки камер сгорания и топок печей и каминов. Другой тип изделий незаменим в мощении пешеходных дорожек во дворах индивидуальных домов и садово-парковых зонах. Указанные изделия отвечают определенным требованиям.

Огнеупорный кирпич

Огнеупорный или шамотный кирпич отличается высокой стойкостью к высокотемпературным воздействиям в пределах от 1400 до 1800 °С и открытому огню. В состав формовочной массы его вводится до 70 % тугоплавкой глины, которая препятствует разрушения изделия при остывании.

Существуют разные сорта огнеупорного керамического кирпича, которые определяются рабочей температурой и устойчивостью к разнообразным факторам внешней среды:

  • Кварцевый. Предназначен для кладки сводов печей, выполняющих функции отражателя.
  • Шамотный. Используется для кладки бытовых печей и каминов, наиболее распространенный вид огнеупорного кирпича.
  • Основной. Изготавливается из магнезиально-известковых масс и применяется в металлургии для сооружения плавильных печей.
  • Углеродистый. Используется в некоторых отраслях промышленности для строительства домен, в его состав входит прессованный графит.

Печной керамический кирпич.

Клинкерный кирпич

Клинкерный кирпич предназначается для облицовки фасадов и цокольных частей зданий, мощения полов во внутренних помещениях производственного назначения и дорожек на улице. Изделие отличается высокой механической прочностью, износо- и морозостойкостью, способно выдержать до 50 циклов охлаждения до экстремальных температур с последующим нагревом. Марка прочности изделия не менее М400 обеспечивается высокой плотностью и особыми требованиями к составу сырья.

Транспортировка и хранение керамического кирпича

Керамический кирпич допускается перевозить всеми видами наземного, водного и воздушного транспорта с соблюдением соответствующих правил. Для удобства транспортировки и обеспечения сохранности изделие пакетируется на стандартных поддонах установленного размера. Не допускается перевозка данного строительного материала навалом с последующим сбросом на грунт, такие действия приводят к повреждениям до 20 % изделий.

Длительное хранение кирпича керамического производится под навесом на площадках с твердым покрытием. Изделия могут располагаться на поддонах в один или несколько ярусов или в штабелях непосредственно на покрытии. Погрузочно-разгрузочные операции выполняются механизированным способом или вручную с соблюдением правил и мер безопасности.

Видео. Достоинства и недостатки керамического кирпича

Если вы заметили ошибку, не рабочее видео или ссылку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Кирпич керамический ГОСТ: основные требования, характеристики

Керамический кирпич – это один из самых востребованных строительных материалов. Его удобная форма позволяет формировать конструкции любой сложности от обычных стен до изысканных арок и куполов. Чтобы строения получались прочными и выполняли свои задачи, керамический кирпич должен соответствовать ГОСТ. В этой статье мы разберемся в основных требованиях к этому материалу и его разновидностях.

Керамический кирпич: ГОСТ или ТУ?

Даже профессиональный строитель не всегда может определить качество кирпича. Между тем, оно может существенно различаться даже в рамках допустимых показателей. Соответственно, при покупке материала, необходимо тщательно изучить документы на него, ведь в зависимости от состава глины, дополнительных примесей, длительности и температуры обжига и других показателей свойства кирпича довольно значительно меняются.

Современные технические условия (ТУ) определяются сами производителем и заверяются в Роспотребнадзоре, который в этом случае следит, главным образом, за безопасностью продукции. В остальном показатели, вплоть до размеров, могут меняться по желании производителя, а значит, подобрать кирпич становится очень сложно.

ГОСТ (Государственный Отраслевой Стандарт) на керамический кирпич – другое дело. Он строго регламентирует все нюансы производства от выбора глины и примесей до правил транспортировки и хранения. Соответственно, покупая продукцию с сертификатом соответствия ГОСТ, Вы можете быть уверены в ее надлежащем качестве.

Современный ГОСТ на керамический кирпич

Сегодня производство керамического кирпича и камня регламентируется ГОСТ 530-2012 от 2013 года.

Этот документ определяет:


  • виды материала и его назначение;

  • внешний вид, размеры;

  • состав глины, виды и количество примесей;

  • плотность;

  • прочность на сжатие;

  • морозостойкость;

  • маркировку;

  • условия хранения и транспортировки.

Кроме того, в приложениях к ГОСТ указаны условия испытаний продукции, возможные повреждения и их допустимое количество, теплотехнические характеристики стандартных кладок.


Виды керамического кирпича по ГОСТ

В первую очередь кирпич различается по внешнему виду и назначению. Сегодня ГОСТ определяет следующие виды материала:


Размеры керамического кирпича по ГОСТ

Размеры кирпича также регламентируются ГОСТ, это дает возможность при необходимости покупать материал от разных производителей, не боясь, что он не подойдет из-за различий в габаритах.

Сегодня в ходу кирпич трех размеров:


  • одинарный (стандартный) – 250х120х65 мм, имеет маркировку 1 НФ;

  • полуторный (утолщенный) – 250х120х88 мм, маркирован 1,4 НФ;

  • двойной – 250х120х138 мм, маркировка 2,1 НФ.

Также некоторые производители выпускают так называемый евро-кирпич, имеющий размер 120х88х65 мм.

Основные свойства кирпича и их обозначение

Согласно ГОСТ, керамический кирпич должен обладать рядом физических свойств, данные о которых обязательно отражаются в маркировке изделия. На них необходимо ориентироваться при выборе материала для строительства.

Вот эти свойства:


  • прочность на сжатие – способность сопротивляться нагрузке, обозначается буквой М и числом после, для рядового кирпича составляет от М100 до М300, клинкерный может иметь прочность М1000;

  • морозостойкость – способность выдерживать циклы замораживания и размораживания без потери свойств, обозначается буквой F и минимальным числом циклов; для рядового керамического кирпича по ГОСТ этот показатель не должен быть меньше 25;

  • коэффициент теплопроводности – способность сохранять тепло, не выше 0,47 вт/мС для рядового кирпича;

  • средняя плотность изделия, во многом зависящая от вида кирпича;

  • водопоглощение – способность впитывать влагу (10-12% для рядового кирпича).

ГОСТ регламентирует и другие свойства керамического кирпича, например, паропроницаемость, звукоизоляцию и т.п.


Маркировка керамического кирпича по ГОСТ

Согласно стандарту, производитель обязан указать на упаковке с изделиями все основные их свойства в виде краткой маркировки

Минимальная информация это:


  • наименование производителя;

  • дату изготовления и номер партии;

  • количество изделий в упаковке;

  • размер и массу изделий;

  • вид изделий;

  • группу по теплопроводности.

При необходимости производитель может добавлять и другую информацию по своему усмотрению, но этот минимум должен присутствовать. Он позволит быстро сориентироваться при покупке кирпича и выбрать тот вид и класс, который оптимально подойдет для конкретной стройки.

Скачать документ: ГОСТ Кирпич и камень керамические (pdf, 207,88 Кб)

Керамический кирпич: виды и применение

Керамический кирпич — один из двух основных видов кирпича, наряду с силикатным. Кирпич формуют из глины с применением различных добавок с последующим обжигом. Керамический кирпич имеет несколько разновидностей: строительный (рядовой, полнотелый), пустотелый, облицовочный (лицевой). Лицевой имеет несколько подвидов: фасадный, фасонный, фигурный, глазурованный, ангобированный. Фасадный кирпич бывает пустотелым и полнотелым, фасонный — строительным и облицовочным. По фактуре поверхности ложковой и тычковой граней изделия могут быть гладкими или рифлеными.

Существует два способа производства керамического кирпича: пластический и полусухого прессования. В первом случае глиняную массу влажностью 17-30% выдавливают из ленточного пресса, затем сушат и обжигают. Во втором сырец формируют из глины влажностью 8-10% сильным прессованием; такой материал не рекомендуют для строительства помещений с высокой влажностью.

Керамический кирпич применяется в строительстве практически везде: при закладке фундамента, возведении несущих стен и межкомнатных перегородок, при кладке печей и каминов, для облицовки зданий и внутренней отделки. Для тех частей, что непосредственно контактируют с открытым огнем, необходим шамотный (огнеупорный) кирпич, а для отделки берут «каминный» – аналог облицовочного фасонного. Клинкерным кирпичом мостят дорожки.

Технические характеристики керамического кирпича отражены в ГОСТ 7484-78 «Кирпич и камни керамические лицевые. Технические условия» и ГОСТ 530-95 «Кирпич и камни керамические. Технические условия». Вес кирпича в готовом, высушенном, состоянии не должен превышать 4,3 кг. Должны быть указаны характеристики морозостойкости (указывается литерой F с цифровым указанием). Норма прочности на сжатие зависит от типа строения. Указывается она литерой М и цифровым показателем. Чем больше здание, тем выше должна быть цифра.

Полнотелый кирпич – материал с малым объемом пустот (меньше 13%). Применяется для кладки внутренних и внешних стен, перегородок, а также для кладки ниже уровня гидроизоляции, возведения колонн, столбов и других конструкций, несущих помимо собственного веса дополнительную нагрузку. Материал отличается высокой прочностью на изгиб и на сжатие, морозостойкостью, но по своим теплозащитным качествам уступает многим другим строительным материалам.

Пористость определяет теплоизолирующие свойства, качество сцепления с кладочным раствором, а заодно и впитывание влаги при смене погоды. Водопоглощение обычного кирпича должно быть более 8%, на рынке присутствует материал, у которого эта величина достигает 20%. Сопротивление теплопередаче полнотелого кирпича невелико, поэтому наружные стены, полностью выложенные из этого материала, требуют дополнительного утепления.

Пустотелый кирпич применяют для кладки облегченных наружных стен малоэтажных зданий, перегородок, заполнения каркасов высотных и многоэтажных зданий. Его называют также щелевым, поризованным, он используется преимущественно для ненагруженных конструкций.

Отверстия в пустотелом кирпиче могут быть как сквозные, так и закрытые с одной стороны; по форме – круглые, квадратные, прямоугольные и овальные; по расположению – вертикальные и горизонтальные. Материал с горизонтальными отверстиями менее прочен.

За счет того, что пустоты составляют значительную часть объема (более 13%), на изготовление пустотелого кирпича уходит меньше сырья, чем на изготовление полнотелого. Отсюда – более низкая цена. Кроме того, замкнутые объемы сухого воздуха повышают теплоизолирующие свойства материала.Пустотелый тип кирпича легок и дает возможность снизить нагрузку на фундамент. Такой кирпич требует применения более пластичных кладочных растворов: они не проваливаются в пустоты кирпича. Для того, чтобы получить такой раствор, нужно использовать пластифицирующие добавки.

Малая ширина прорези, которую имеет пустотелый кирпич, дает возможность сохранить все полезные свойства, которыми обладает пустотелый кирпича, так как вероятность проникновения в нее кладочного раствора достаточно низкая. Соответственно, снижается вероятность образования мостиков холода. При увеличении количества пустот прочность кирпича уменьшается.

Для улучшения теплотехнических характеристик на этапе производства стараются добиться повышенной пористости сплошной части кирпича: при подготовке глины в нее добавляют торф, мелко нарезанную солому, опилки или уголь, которые при обжиге выгорают, образуя маленькие пустоты в глиняном массиве.

Облицовочный кирпич используют при облицовке зданий. Стандартные размеры у него такие же, как у рядового, – 250×120×65 мм. Некоторые производители предлагают фасадный кирпич уменьшенной ширины (85 мм вместо 120).

Лицевой кирпич чаще всего выпускается пустотелым, он выполняет декоративную функцию. Цветовая гамма материала – от светло-желтого до темно-красного. Затраты на кирпичную облицовку больше, чем на оштукатуривание, но при правильном выборе материала «керамический» фасад не потребует обновления гораздо дольше, чем штукатурка.

Фасадный кирпич – пустотелый, его теплотехнические характеристики достаточно высоки. По нормативам, облицовка обязана обладать хорошей морозостойкостью и внешним видом. Цвет должен быть ровным, грани – гладкими, формы – точными. Не допускается наличие трещин и расслоения поверхности.

Интересен облицовочный фактурный (рельефный) кирпич. Его ложковая и тычковая поверхности имеют рисунок. Это может быть просто повторяющийся вдавленный рельеф, а может быть и обработка под «мрамор», «дерево», «антик» (фактурный с потертыми или нарочито неровными гранями) – на выбор заказчика.

Фасонный кирпич называют фигурным. Отличительные признаки такого кирпича – скругленные углы и ребра, скошенные или криволинейные грани. Именно из таких элементов без особых сложностей возводят арки, круглые колонны, выполняют декор фасадов. Существуют специальные элементы для подоконника и карнизов. Подвид фасонного – лекальный кирпич, форма которого выполняется на заказ.

Для получения кирпича с блестящей цветной поверхностью на обожженную глину наносят глазурь (специальный легкоплавкий состав, в основе которого – перемолотое в порошок стекло), а затем проводят вторичный обжиг уже при более низкой температуре. После этого образуется стекловидный водонепроницаемый слой, обладающий хорошим сцеплением с основной массой и, как следствие, повышенной морозостойкостью. Глазурованный кирпич позволяет выкладывать мозаичные панно как в помещении, так и со стороны улицы.

При производстве ангобированного кирпича цветной состав наносят на высушенный сырец и обжигают один раз. Ангоб состоит из белой или окрашенной красителями глины, доведенной до жидкой консистенции. Если температура обжига подобрана правильно, он дает непрозрачный, ровный слой матового цвета. Глазурованный и ангобированный кирпич применяют при оригинальной дизайнерской облицовке внешних и внутренних стен.

Кирпич клинкерный применяют для облицовки цоколей, мощения дорог, улиц, дворов, полов в промышленных зданиях, облицовки фасадов.

Погруженный полностью в воду, клинкерный кирпич выдерживает от 50 циклов попеременного замораживания/оттаивания. Характеристики обеспечиваются большой плотностью кирпича, которая достигается благодаря использованию тугоплавких глин, которые обжигают до спекания при значительно более высоких температурах, чем принято при изготовлении обычного строительного кирпича.

Клинкер используют для облицовки фасадов – отделка долгое время не нуждается в ремонте, грязь и пыль практически не проникают в структуру поверхности. Недостаток один: в силу высокой плотности клинкер обладает повышенной теплопроводностью.

Чтобы избежать быстрого разрушения кладки, контактирующей с открытым огнем, необходим кирпич, способный выдерживать высокие температуры. Его называют печным, огнеупорным и шамотным. Материал выдерживает температуры свыше 1600°C. Делают такой кирпич из шамота – огнеупорной глины. Шамотный кирпич может быть обычно, трапециедальной, клиновидной и арочной формы.

Одним из реальных источников появления брака керамического кирпича (трещин, половняка, отбитостей и сколов) является его некоректная транспортировка. Правильным способом является перевозка кирпича на поддонах.

Керамический кирпич является обжиговым материалом, имеющим неплохую атмосферостойкость и это допускает его приобретение впрок (в том числе и зимой). Хранение керамического кирпича желательно осуществлять под навесом (исключающим прямое попадание на него атмосферных осадков), в штабелях, с вентиляционными зазорами в кладке и проходами между штабелями.

Полезные статьи о керамических кирпичах

Рядовой кирпич для долговечного строительства

Рядовой кирпич используется сегодня при проведении самых разных видов строительных работ. Он хорошо подходит для возведения зданий, сооружения фундаментов, а также для укладки дорожек и бордюров. Это основной материал для монтажа несущих стен, арок и перегородок. Технические характеристики изделия позволяют использовать его при создании конструкций с повышенными требованиями к прочности. Для использования в качестве облицовочного слоя такой кирпич не предназначен. Выложенный каркас остается невидимым, поэтому кирпичные грани в этом случае необязательно должны быть идеально ровными. Наименование «рядовой» означает, что материал укладывается рядами, формируя стены и фундаментные основания.

Производство

Материалом изготовления рядового кирпича служит добываемая в карьерах глина. Ее измельчают, очищают, смешивают с водой и в полученный состав добавляют специальные присадки. Полученную в результате смесь распределяют по формам и направляют в печь, разогретую до температуры +1400 °С. После обжига получают прочный, долговечный, экологически чистый продукт красного цвета. Для снижения себестоимости продукции кирпичные заводы часто располагают вблизи месторождений глины.













 

Разновидности материала

Рядовой кирпич бывает полнотелым и пустотелым. В первом случае он представляет собой монолитный камень, во втором – изделие со специальными отверстиями различной формы. Полнотелую разновидность стройматериала применяют для постройки фундаментов, цокольных и подвальных помещений, а также при возведении несущих стен, опорных колонн и столбов. Пустотелый кирпич подходит для строительства зданий высотой не более 3 этажей, создания различных декоративных конструкций и строений, не предусматривающих воздействия высоких нагрузок. Пустоты в структуре изделия обеспечивают лучшую теплоизоляцию и уменьшают общий вес здания.













 

Характеристики

Рядовой кирпич выбирают с учетом основных характеристик этого строительного материала.

Прочность. Этот параметр обозначают буквой «М» и числом, указывающим величину нагрузки, которую может выдержать изделие. Например, маркировка М100 говорит о том, что 1 см поверхности кирпича выдерживает вес в 100 кг. Для строительства зданий высотой до 5 этажей достаточно прочности М125. При создании фундаментов и постройке 9-этажных домов используют кирпич с маркировкой М150. Этот же строительный материал подходит для кладки несущих стен и внутренних перегородок.

Водопоглощение. Чтобы определить количество влаги, которое может поглотить одна единица стройматериала, ее погружают в воду на 48 часов. Допустимым значением водопоглощения рядового кирпича считается способность впитывать до 15 % влаги от общего объема изделия.

Морозостойкость. В спецификации эту характеристику указывают буквой F и цифровым значением, определяющим способность материала выдерживать циклы заморозки и разморозки. Данный параметр имеет обратную зависимость от водопоглощения: чем меньше влаги впитывает изделие, тем более низкие температуры оно способно выдерживать. Для стандартных условий строительства обычно подходит кирпич с морозостойкостью F25, для фундаментов – минимум F35.

Теплопроводность. Среднее значение этого показателя для рядового кирпича составляет 0,45-0,8 Вт/м. Стены кирпичных зданий могут дополнительно утепляться специальными теплоизоляционными материалами.













 

Наше предложение

Купить рядовой кирпич по выгодной цене и заказать доставку груза по указанному адресу в Москве и Московской области можно, обратившись в компанию «Кирпич. ру». Мы предлагаем строительные материалы от ведущих отечественных и зарубежных производителей, включая такие торговые марки, как «Римкер», «Мстера», Braer, «Воротынский кирпич» и множество других. В нашем каталоге вы можете выбрать полнотелый, с техническими пустотами, поризованный или щелевой кирпич требуемого размера и цвета, с заданными параметрами прочности и морозостойкости. Более подробная информация о нашей компании доступна по телефону +7 (495) 369-33-88 или через e-mail [email protected].

Керамический полнотелый кирпич — облицовочный и строительный

Сегодня мы поможем Вам разобраться в многообразии видов полнотелого керамического кирпича, определиться особенностями применения. Статья написана максимально простым языком и предназначена для людей, которые не выбрали строительство своей профессией, а занялись им по наитию. Однако, если данный материал всё равно покажется Вам сложным и скучным, не тратьте своё время на чтение, а просто позвоните по телефону (812) 337-20-90 и скажите, для какой постройки Вам нужен кирпич. Специально обученный менеджер на том конце провода подумает обо всех нюансах за Вас. Ну а самых пытливых прошу следовать за мной. 

Кирпич полнотелый строительный 

Такой строительный кирпич используется как правило для опорных конструкций, перегородок и печей. Такой кирпич обычно имеет формат 250х120х65 мм и называется одинарным полнотелым кирпичом. Как правило, выполняет несущую функцию, поэтому прочность — основной критерий выбора! Никогда ни при каких обстоятельствах не покупайте кирпич с маркой прочности меньше, чем М150. Больше можно, меньше — нет, это в интересах Вашей безопасности. 


Для печей важна также чёткая геометрия и минимальное отклонение от эталонных размеров. В печи не допускается разная толщина швов — это тоже вопрос безопасности. Плюс возведение печи подразумевает повышенную марку прочности кирпича, это как минимум М200, а лучше М250 или выше. Также у рядового полнотелого кирпича есть особенности, о которых следует всегда помнить при покупке, особенно, если кладка из него не будет закрыта тем или иным видом отделки.  



Следует в первую очередь чётко сознавать, что керамический полнотелый строительный кирпич имеет законное право не быть красивым. ГОСТ 530-2012 допускает сильный разнотон в рамках партии и даже неоднородность цвета одного кирпича, а также небольшие сколы и трещины, которые не влияют на прочность. С точки зрения технических характеристик им вполне можно облицевать печь, но с эстетической точки зрения такое решение впишется не в каждый интерьер, а претензии по внешнему виду мы не сможем принять по закону. С другой стороны, грубоватый пёстрый полнотелый рядовой кирпич шикарно впишется в модный интерьер в стиле лофт.

Кирпич лицевой полнотелый 

Речь также о керамическом облицовочном кирпиче. Полнотелый кирпич для облицовки как правило изначально имеет повышенную прочность (часто это М500 и даже выше). Это связано с особенностями его применения. В первую очередь, полнотелый лицевой керамический кирпич используют для отделки печей. А как мы с Вами помним, печь требует повышенных прочностных характеристик. 

Мы рекомендуем использовать красный полнотелый кирпич «ЛСР» М250 или «Лоде» М500. Оба имеют глубокий насыщенный цвет и прекрасную геометрию. Также полнотелый лицевой кирпич применяют для создания декоративных архитектурных элементов. 


Дело в том, что отверстия обычного лицевого кирпича не должны быть видны ни при каких обстоятельствах: это некрасиво (за редким исключением) и часто ведёт к порче кирпича вплоть до отслоения лицевой поверхности, а это не только некрасиво, но и травмоопасно. Поэтому для архитектурных элементов, в которых отдельные ряды кирпича выступают, заказывайте полнотелый лицевой кирпич. Вариант, который лучше других подойдёт по цвету, Вам предложат наши менеджеры . 


Традиционно, по всем вопросам, касающимся полнотелого керамического кирпича, расчётов его расхода, покупки, предоставления специальных цен, Вы можете обратиться к нам по электронной почте info@baltceramic. ru, телефону (812) 337-20-90 или заказав обратный звонок.

Предыдущая статья
Следующая статья

Виды и характеристики кирпича, представленного на петербургском рынке

Самым распространенным кирпичом является общеизвестный красный или керамический кирпич, который получают путем обжига глин и их смесей. Еще порядка 10% рынка принадлежит силикатному кирпичу, полученному из застывшего в автоклаве известкового раствора.

Вне зависимости от материала, основные характеристики кирпичей едины. Это:

  • Прочность – основная характеристика кирпича – способность материала сопротивляться внутренним напряжениям и деформациям, не разрушаясь. Она обозначается М (марка) с соответствующим цифровым значением. Цифры показывают, какую нагрузку на 1 кв. см. может выдержать кирпич. В продаже чаще всего встречается кирпич марок М100, 125, 150, 175. Например, для строительства многоэтажных домов используют кирпич не ниже М150, а для дома в 2–3 этажа достаточно и кирпичей М100.
  • Морозостойкость – способность материала выдерживать попеременное замораживание и оттаивание в водонасыщенном состоянии, обозначается Мрз и измеряется в циклах. Во время стандартных испытаний кирпичи опускают в воду на 8 часов, потом помещают на 8 часов в морозильную камеру (это один цикл). И так до тех пор, пока кирпич не начнет менять свои характеристики (массу, прочность и т.п.). Тогда испытания останавливают и делают заключение о морозостойкости кирпича. Кирпич с более низким циклом обычно дешевле, но и эксплуатационные свойства его обычно ниже и годятся разве для южных широт. В нашем климате, рекомендуется использовать кирпич не менее Мрз 35.

По плотности тела кирпич делят на пустотелый и полнотелый. Чем больше пустот в кирпиче, тем он теплее и легче. Тепловые свойства кирпичу может также придать пористость самого материала, а внутренние поры способствуют лучшей изоляции звука. Развитие современной технологии направлено на создание поризированного (насыщенного порами) кирпича.

Классический размер кирпича 250х120х65 мм, его называют одинарным. Этот размер удобен для каменщика и кратен метру. Есть кирпич и большего размера – полуторный (его высота 88 мм), керамические камни двойного и многократно большего размера.

Цвет кирпича в основном зависит от состава глины. Большинство глин после обжига становятся «кирпичного» цвета, но есть глины, после обжига приобретают желтый, абрикосовый или белый цвет. Если в такую глину добавить пигментные добавки, то получится коричневый кирпич. Силикатный кирпич, исходно белый, окрасить путем внесения пигментов еще проще.

Рассмотрим виды, характеристики и назначение кирпичей подробнее.

Силикатный кирпич

По сути, силикатный кирпич представляет собой бруски из силикатного автоклавного бетона, имеющие форму и размеры кирпича. Он состоит примерно из 90% извести, 10% песка и небольшой доли добавок. Его достоинство в сравнении с керамическим – дешевизна, возможность обеспечить разнообразные оттенки. Недостатки: силикатный кирпич тяжел, не очень прочен, не водостоек, легко проводит тепло. Поэтому он уступает керамическому кирпичу в универсальности применения и используется только в кладке стен и перегородок, но не может применяться в фундаментах, цоколях, печах, каминах, трубах и других ответственных конструкциях.

Свойства силикатного кирпича регламентируются ГОСТ 379-79 «Кирпич и камни силикатные. Технические условия». Его основные характеристики:

  1. марка по прочности – М125, М150;
  2. марка по морозостойкости – F15, F25, F35;
  3. теплопроводность – 0,38–0,70 Вт/м°С.

Требования по размерам, качеству, геометрии и внешнему виду силикатного кирпича аналогичны требованиям, предъявляемым к керамическому кирпичу.

Соотношение силикатного и керамического кирпича составляет, соответственно, 15 и 85%. Единственным в нашем регионе производителем силикатного кирпича является ЗАО «Павловский завод Строительных Материалов». Современный ассортимент предприятия состоит как из традиционного белого полнотелого силикатного кирпича, так и из новых видов продукции (силикатный пустотелый кирпич, силикатные стеновые пустотелые блоки). С 1998 года предприятие выпускает фактурный кирпич «Антик»® (с эффектом каменной стены старого замка). С 1999 года – объемно окрашенный кирпич и кирпич с наполнителями, улучшающими его теплоизолирующие свойства. В июле 2003 года ЗАО «Павловский завод СМ» выпустил первую партию силикатного пустотелого кирпича. Среди главных достоинств нового продукта – вес изделия (благодаря 11 несквозным отверстиям кирпич весит всего 2,5 кг) и низкая теплопроводность.

Примеры современного силикатного кирпича производства «Павловского завода СМ»:

Кирпич окрашенный фактурный «антик»

Геометрические размеры: 250x120x65 мм
Масса (справочно): 3,15–3,45 кг
Прочность на сжатие: 150 кгс/см² (М-150)
Теплопроводность кладки: 0,92 Вт/м°С
Водопоглощение: 8%
Морозостойкость: свыше 50 циклов
Фактурный кирпич используется в качестве облицовочного материала, создавая эффект старого замка построенным из него зданиям.
Основные цвета: желтый, коричневый, розовый, салатный, синий. Возможно получение множества оттенков основных цветов путем дозировки добавления красителя.

 

 Кирпич силикатный пустотелый

Геометрические размеры: 250x120x65 мм
Масса (справочно): 2,5–2,6 кг
Пустотность: 33%
Прочность на сжатие: 50 кгс/см² (М-150)
Теплопроводность кладки: 0,44 Вт/м°C
Водопоглощение: 10–12%
Морозостойкость: свыше 35 циклов
Кирпич выпускается с 33% пустотностью, которая достигаться путем формования кирпича с 11-ю несквозными отверстиями, что позволяет снизить вес кирпича до 2,5 кг, а также снизить и теплопроводность изделия.

 

Полнотелый кирпич

Он же строительный, обычный, рядовой – материал с малым объемом пустот (меньше 13%). Применяется полнотелый кирпич для кладки внутренних и внешних стен, возведения колонн, столбов и других конструкций, несущих помимо собственного веса дополнительную нагрузку. Поэтому он должен обладать высокой прочностью (при необходимости используют кирпич марки М250 и даже М300), быть морозостойким. По ГОСТУ максимальная марка по морозостойкости такого кирпича – F50, но можно встретить и кирпич марки F75. Прочность достигается не даром – полнотелый кирпич имеет среднюю плотность 1600–1900 кг/м³, пористость 8%, марку морозостойкости 15–50 циклов, коэффициент теплопроводности 0,6–0,7 Вт/м°С, марку прочности 75–300. Поэтому наружные стены, полностью выложенные полнотелого кирпича, требуют дополнительного утепления. Полнотелый красный кирпич классического размера весит от 3,5 до 3,8 кг. В одном кубометре содержится 480 кирпичей.

Больше всех строительного и полнотелого кирпича производит ОАО «Ленстройкерамика». Это предприятие является единственным в регионе производителем высокопрочного кирпича марок М250, М300, предназначенного для строительства высотных зданий.

Примеры полнотелого кирпича производства завода «Ленстройкерамика»:

Кирпич строительный полнотелый

Размер (мм): 250х120х65
Масса (кг): 4,1
Плотность (кг/м³): 2100
Марка: М200, М250, М300
Морозостойкость: F50, F75
Водопоглощение: 8%
Теплопроводность (Вт/м°С)
при влажности 0%
: 0,72

Применяется при возведении несущих стен, цокольных этажей, опорных колонн и других, сильно нагруженных конструкций зданий. Отличительной особенностью данного вида продукции является высокая прочность.

Пустотелый кирпич

В соответствии со своим названием главным отличием этого кирпича является наличие внутренних пустот – отверстий или щелей, которые могут иметь разную форму (круглые, квадратные, прямоугольные и овальные), объем (13–50% внутреннего объема) и ориентацию (вертикальные и горизонтальные). Наличие пустот делает этот кирпич менее прочным, более легким и теплым, на его изготовление идет меньше сырья. Пустотелый кирпич применяют для кладки облегченных наружных стен, перегородок, заполнения каркасов высотных и многоэтажных зданий и иных ненагруженных конструкций.

Второй, новейший, способ обеспечения легкости и теплоты кирпича – поризация. Наличия большего числа мелких пор в кирпиче достигают, добавляя в глиняную массу при его формовке сгораемые включения – торф, мелко нарезанную солому, опилки или уголь, от которых после обжига остаются лишь маленькие пустоты в массиве. Зачастую полученный таким образом кирпич называют легким или сверхэффективным. Поризованный кирпич обеспечивает лучшую тепло- и звукоизоляцию, по сравнению с щелевым.

Технические характеристики обычного пустотелого кирпича: плотность 1000–1450 кг/м³, пористость 6–8%, морозостойкость 6–8%, морозостойкость 15–50 циклов, коэффициент теплопроводности 0,3–0,5 Вт/м°С, марка прочности 75–250, цвет от светло-коричневого до тёмно-красного.

Технические характеристики пустотелого сверхэффективного кирпича (НПО «Керамика»): плотность 1100–1150 кг/м³, пористость 6–10%, морозостойкость 15–50 циклов, коэффициент теплопроводности 0,25–0,26 Вт/м°С, марка прочности 50–150, цвет оттенков красного.

Примеры пустотелого и поризованного кирпича производства заводов «Ленстройкерамика» и завода «Керамика»:

Кирпич пустотелый строительный, пустотность 22%

Размер (мм): 250х120х65
Масса (кг): 3,4
Плотность (кг/м³): 1700
Марка: М175, М200, М250
Морозостойкость: F35, F50
Водопоглощение (%): 6
Теплопроводность (Вт/м°С),
при влажности 0%
: 0,53

 

Применяется в строительных конструкциях с повышенными требованиями по прочности и надежности. Рекомендован для строительства кирпичных зданий повышенной этажности.

 

Кирпич пустотелый строительный, пустотность 40%

Размер (мм): 250х120х65
Масса (кг): 2,3
Плотность (кг/м³): 1120–1190
Марка: М125, М150, М175
Морозостойкость: F35, F 50
Водопоглощение: (%) 6
Теплопроводность (Вт/м°С) при влажности 0%: 0,24 (на легком растворе)

Используется для возведения внутрениих и наружних стен.
 

Кирпич пустотелый строительный, пустотность 42–45%.

Размер (мм): 250х120х65
Масса (кг): 2,2–2,5
Плотность (кг/м³): 1100–1150
Марка: М 125, М 150 (М 175 на заказ)
Морозостойкость: F35
Водопоглощение (%): 6–8
Теплопроводность (Вт/м°С)
при влажности 0%
:
0,20(на легком растворе)/0,26

Применяется для возведения наружных и внутренних стен зданий и сооружений. Отличается пятью рядами пустот, что позволяет снизить расход кладочного раствора на 20%.

Камень строительный поризованный 2НФ

Размер (мм): 250х120х138
Масса (кг): 3,7–3,9
Плотность (кг/м³): 890–940
Марка: М 125, М 150 (М 175 на заказ)
Морозостойкость: F35
Водопоглощение (%): 6,5–9
Теплопроводность (Вт/м°С)
при влажности 0%
:
0,16(на легком растворе)/0,18

Достоинства: великолепные теплоизоляционные свойства, звуконепроницаемость, меньший вес. Используется в строительстве наружных и внутренних стен, значительно повышая теплозащитные свойства дома. Наружные стены из поризованного камня возводятся быстрее, чем стены из обычного пустотелого кирпича, сокращается количество растворных швов. Плотность его на 30% меньше, он легче, что ведёт к снижению нагрузок на конструкцию фундамента. При меньшей толщине стены в 640 мм из поризованной керамики даёт такой же эффект теплоизоляции, что и обычная кирпичная стена в 770 мм.

Облицовочный кирпич

Он же лицевой и фасадный. Главное назначение облицовочного кирпича – кладка внешних и внутренних стен с высокими требованиями к поверхности стены. Соответственно облицовочный кирпич имеет строго правильную форму и ровную, глянцевую поверхность внешних стенок. Не допускается наличие трещин и расслоения поверхности. Как правило, фасадный кирпич – пустотелый, а, следовательно, его теплотехнические характеристики достаточно высоки. Подбирая составы глиняных масс и регулируя сроки и температуру обжига, производители получают самые разнообразные цвета. Эти колебания цвета могут быть и не предумышленными, так что все необходимое количество лицевого кирпича целесообразнее покупать сразу же, одной партией, так чтобы вся облицовка была однородной по цвету.

Затраты на кирпичную облицовку больше, чем на оштукатуривание, но такой фасад существенно долговечнее, чем штукатурка. При использовании декоративного кирпича для внутренних стен особое внимание уделяется разделке швов. Стандартные размеры лицевого кирпича такие же, как у рядового, – 250х120х65 мм.

Технические характеристики облицовочного кирпича: плотность 1300–1450 кг/м³, пористость 6–14%, морозостойкость 25–75 циклов, коэффициент теплопроводности 0,3–0,5 Вт/м°С, марку прочности 75–250, цвет от белого до коричневого.

Примеры лицевого кирпича:

Кирпич лицевой красный (завод «Победа»)

 

Размер (мм): 250х120х65
Масса (кг): 2,4–2,5
Плотность (кг/м³): 1200–1300
Марка: М150
Морозостойкость: F35, F50
Водопоглощение (%): 6–7
Теплопроводность (Вт/м°С)
при влажности 0%
: 0,37

Предназначен для кладки и одновременной облицовки наружных и внутренних стен зданий и сооружений любой этажности. Прочностные свойства лицевого кирпича позволяют применять его не только в качестве декоративного материала, но и как несущий материал наряду с рядовым кирпичом.
 

Кирпич керамический лицевой пустотелый Евроформат

Размер (мм): 250х85х65
Масса (кг): 1,8–2,0
Плотность (кг/м³): 1260–1400
Марка: М175
Морозостойкость: F35, F50
Водопоглощение (%): 6–8
Теплопроводность (Вт/м°С)
при влажности 0%
:
0,20 (на легком растворе)/ 0,26

Евроформат – это современный стандарт размера кирпича, который позволяет воплотить в российской реальности европейский эталон экономичности, эстетики и современности. Используется для наружных и интерьерных работ. Евроформат легче, чем обычный кирпич, что позволяет экономить на возведении фундаментов, облегчает и ускоряет работу каменщиков

Цветной и фигурный кирпич

Это особый вид лицевого кирпича, которому для повышения декоративного эффекта придана особая форма, рельеф поверхности или особый цвет. Рельеф может быть просто повторяющимся, а может быть и обработка под «мрамор», «дерево», «антик» (фактурный с потертыми или нарочито неровными гранями). Фасонный кирпич по-другому называют фигурным, что говорит само за себя. Отличительные признаки фигурного кирпича – скругленные углы и ребра, скошенные или криволинейные грани. Именно из таких элементов без особых сложностей возводят арки, круглые колонны, выполняют декор фасадов.

Среди предприятий нашего региона в области цветного и фигурного кирпича пальму первенства вновь делят НПО «Керамика» и «Победа Кнауф». Последнее в прошлом году начало выпуск ангобированного кирпича (кирпич объемного окрашивания, устойчивый к различного рода воздействиям) расширенной цветовой гаммы.

Кирпич керамический лицевой пустотелый цветной и коричневый

Кирпич лицевой кремовый, окрашенный в массе (завод «Победа»)

Размер (мм): 250х120х65
Масса (кг): 2,4–2,5
Плотность (кг/м³): 1200–1300
Марка: М150
Морозостойкость: F50
Теплопроводность (Вт/м°С)
при влажности 0%
: 0,37
Водопоглощение (%): 6–7

Кремовый – это оригинальный цвет и теплота мягких кремовых красок. Кремовый кирпич предназначен для облицовки наружных и внутренних стен.

Кирпич лицевой белый с офактуренной поверхностью (завод «Победа»)

 

Размер (мм): 250х120х65
Масса (кг): 2,4–2,5
Плотность (кг/м³): 1200–1300
Марка: М150
Морозостойкость: F35, F50
Водопоглощение: (%) 6–7
Теплопроводность (Вт/м°С)
при влажности 0%
: 0,37

Предназначен для облицовки наружных стен зданий и сооружений любой этажности. Технология производства позволяет достигнуть равномерности цвета.

Кирпич лицевой соломенный, с офактуренной поверхностью (завод «Керамика»)

Размер (мм): 250х120х65
Масса (кг): 2,2–2,5
Плотность (кг/м³): 1130–1280
Марка: М125, М150 (М175 на заказ)
Морозостойкость: F35, F50
Водопоглощение (%): 6–8
Теплопроводность (Вт/м°С)
при влажности 0%
:
0,20(на легком растворе)/0,26

Предназначен для облицовки наружных стен зданий и сооружений любой этажности. Технология производства позволяет достигнуть равномерности цвета.

Кирпич лицевой цветной с офактуренной поверхностью (завод «Керамика»)

Размер (мм): 250х120х65
Масса (кг): 2,2–2,5
Плотность (кг/м³): 1130–1280
Марка: М125, М150 (М175 на заказ)
Морозостойкость: F35, F50
Водопоглощение (%): 6–8
Теплопроводность (Вт/м°С)
при влажности 0%
:
0,26(на легком растворе)/0,20

Предназначен для облицовки наружных стен зданий и сооружений любой этажности. Технология производства позволяет достигнуть равномерности цвета. Цвет розовый, серый, светло-зеленый, зеленый, желтый, голубой, синий
 

Кирпич лицевой с рельефной поверхностью «Тростник», красный (завод «Керамика»)

Размер (мм): 250х120х65
Масса (кг): 2,2–2,5
Плотность (кг/м³): 1130–1280
Марка: М125, М150 (М175 на заказ)
Морозостойкость: F35, F50
Водопоглощение (%): 6–8
Теплопроводность (Вт/м°С)
при влажности 0%
:
0,20(на легком растворе)/0,26

Используется для фасадных и интерьерных работ. Лицевая поверхность кирпича напоминает по фактуре стебли тростника и позволяет обогатить керамическую кладку декоративными штрихами, придать ей живописную выразительность.
 

Кирпич лицевой с рельефной поверхностью «Кора дуба», красный (завод «Керамика»)

Размер (мм): 250х120х65
Масса (кг): 2,2–2,5
Плотность (кг/м³): 1130–1280
Марка: М125, М150 (М175 на заказ)
Морозостойкость: F35, F50
Водопоглощение (%): 6–8
Теплопроводность (Вт/м°С)
при влажности 0%
:
0,20(на легком растворе)/0,26

Используется для наружных и интерьерных работ. Поверхность кирпича по фактуре напоминает кору дерева, что определяет выразительность и привлекательность этого материала.

Кирпич лицевой пустотелый фигурный красный, коричневый

Размер (мм): 250х120х65
Масса (кг): 2–2,2
Плотность (кг/м³): 1130–1280
Марка: М125, М150
Морозостойкость: F35, F50
Водопоглощение (%): 6–8
Теплопроводность (Вт/м°С)
при влажности 0%
:
0,20(на легком растворе)/0,26

Фигурный кирпич – это оригинальный материал для украшения дома, позволяющий сделать индивидуальным любое строение. Применение фигурного кирпича позволяет избежать трудоемких операций по резке обычного лицевого кирпича и предоставляет архитекторам широчайшие возможности для создания отдельных архитектурных элементов фасадов: закругления и обрамления оконных и дверных проемов, возведения арок и колонн

Кирпич больших размеров

ГОСТ определяет его как камень керамический. Стандартный камень керамический, или двойной кирпич (как часто называют его продавцы) – имеет размеры 250х120х138 мм. Достоинство керамических камней в их технологичности и экономичности. Кирпич больших размеров позволяет существенно ускорить и упростить процесс кладки. Высшим достижением в производстве подобного кирпича в нашей стране стала продукция завода «Победа ЛСР», освоившего выпуск легких и очень крупных блоков под торговой маркой RAUF.

Подобные изделия очень далеко ушли от простейшего кирпича, который когда-то лепили руками. Блоки завода «Победа ЛСР» даже на глаз имеют вид весьма высокотехнологичных изделий.

Примеры керамических блоков производства объединения «Победа ЛСР»

Камень строительный поризованный 2,1НФ RAUF

Размер (мм): 250х120х138
Масса (кг): 3,8; 4,3*
Плотность (кг/м³): 900; 1000*
Марка: М150, М175
Морозостойкость: F50
Водопоглощение (%): 11; 9*
Теплопроводность (Вт/м°С)
при влажности 0%
: 0,17; 0,26*

* в зависимости от марки камня

Используется в строительстве наружных и внутренних стен, значительно повышая теплозащитные свойства дома. Достоинства: великолепные теплоизоляционные свойства, звуконепроницаемость. Наружные стены из поризованного камня возводятся быстрее, чем стены из обычного пустотелого кирпича, сокращается количество растворных швов. Плотность его на 30% меньше, он легче, что ведёт к снижению нагрузок на конструкцию фундамента. При толщине стены в 640 мм из поризованной керамики даёт такой же эффект теплоизоляции, что и обычная кирпичная стена в 770 мм.

Камень строительный поризованный 4,5НФ RAUF

Размер (мм): 250х250х138
Масса (кг): 6,9
Плотность (кг/м³): 780
Марка: М150
Морозостойкость: F50
Водопоглощение (%): 10
Теплопроводность (Вт/м°С)
при влажности 0%
: 0,22

Используется при возведении наружных стен. Применение этого камня позволяет снизить нагрузку на фундамент, увеличить скорость ведения кладки, сократить расход раствора. Поризованный кирпич легче обычного, обладает низкой плотностью, низкой теплопроводностью. Обладает великолепными теплоизоляционными свойствами. Смягчая перепады температур, создает в доме комфортный микроклимат. Использование его в кладке повышает производительность труда и способствует уменьшению теплопотерь.

Камень крупноформатный сверхпоризованный 10,8НФ RAUF

Размер (мм): 380х253х219
Масса (кг): 14
Плотность (кг/м³): 650–670
Марка: М35, М50
Морозостойкость: F50
Водопоглощение (%): 17
Теплопроводность (Вт/м°С)
при влажности 0%
: 0,154

Используется при возведении наружных стен в малоэтажном домостроении. Сверхпоризованный блок является суперсовременным строительным материалом и обладает всеми преимуществами Теплой (поризованной) керамики.

Камень крупноформатный поризованный 10,8НФ, доборный RAUF

Размер (мм): 380х253х219

Масса (кг): 17

Плотность (кг/м³): 800

Марка: М75, М100

Морозостойкость: F50

Водопоглощение (%): 11

Теплопроводность (Вт/м°С)
при влажности 0%
: 0,18

Выступает доборным элементом при возведении наружных и внутренних стен из Теплой керамики. Поризованный блок легче обычного, он обладает низкой плотностью, низкой теплопроводностью. За счет великолепных теплоизоляционных свойств смягчаются перепады температур в доме. Существенно снижаются транспортные, производственные и технологические издержки, сокращаются временные затраты кладки в 2–2,5 раза.

Камень крупноформатный поризованный 11,3НФ, доборный RAUF

Размер (мм): 398х253х219

Масса (кг): 17,7

Плотность (кг/м³): 800

Марка: М75, М100

Морозостойкость: F50

Водопоглощение (%): 11

Теплопроводность (Вт/м°С)
при влажности 0%
: 0,18

Выступает доборным элементом при возведении стен из Теплой керамики. Поризованный блок легче обычного, что позволяет снизить нагрузки на фундамент. Он обладает низкой плотностью, низкой теплопроводностью. За счет великолепных теплоизоляционных свойств смягчает перепады температур в доме. Существенно снижаются транспортные, производственные и технологические издержки, сокращаются временные затраты кладки в 2–2,5 раза.

Камень крупноформатный поризованный 14,5НФ RAUF

Размер (мм): 510х253х219
Масса (кг): 23
Плотность (кг/м³): 800
Марка: М75, М100
Морозостойкость: F50
Водопоглощение (%): 11
Теплопроводность (Вт/м°С)
при влажности 0%
: 0,18

Является основным материалом при возведении стен домов из Теплой керамики в малоэтажном домостроении. Поризованный блок легче обычного, что позволяет снизить нагрузки на фундамент, он обладает низкой плотностью, низкой теплопроводностью. За счет великолепных теплоизоляционных свойств смягчает перепады температур в доме. Существенно снижаются транспортные, производственные и технологические издержки, сокращаются временные затраты кладки в 2–2,5 раза.

Клинкерный кирпич

Клинкерный кирпич применяют для облицовки цоколей, мощения дорог, улиц, дворов, облицовки фасадов. Последнее можно отметить особо – такая отделка долгое время не нуждается в ремонте, грязь и пыль практически не проникают в структуру поверхности, да и вариаций цветов и форм более чем достаточно. Среди недостатков клинкера – повышенная теплопроводность и высокая стоимость. Плотность клинкера 1900–2100 кг/м³, пористость до 5%, марка морозостойкости 50–100, коэффициент теплопроводности 1,16, марка прочности 400–1000, цвет – от желтого до тёмно-красного.

Клинкерный кирпич прессуется из сухой красной глины и обжигается до спекания при значительно более высоких температурах, чем принято для изготовления обычного строительного кирпича. Это обеспечивает высокую плотность и износостойкость клинкера.

Шамотный кирпич

Чтобы избежать быстрого разрушения кладки, контактирующей с открытым огнем, необходим кирпич, способный выдерживать высокие температуры. Его называют печным, огнеупорным и шамотным. Шамотный кирпич выдерживает температуры свыше 1600°C. Его плотность 1700–1900 кг/м³, пористость 8%, марка морозостойкости 15–50, коэффициент теплопроводности 0,6 Вт/м°С, марка прочности 75–250, цвет от светло-жёлтого до тёмно-красного. Изготавливают шамотный кирпич классической, а также трапециидальной, клиновидной и арочной формы. Делают такой кирпич из шамота – огнеупорной глины.

 

 

Автор: Серебренников Юрий
Источник:

 

Размер керамического кирпича по ГОСТу, виды, характеристики, маркировка

Керамический кирпич — один из самых старых материалов для строительства домов. Со временем технология практически не изменилась. Для улучшения теплотехнических характеристик придумали делать пустоты. Для сокращения времени на стройку стали производить изделия больших размеров. Увеличился ассортимент. Один размер керамического кирпича — явно недостаточно для современного строительства. Но суть производства и используемые материалы остались теми же. Как и проблемы.

Содержание статьи

Плюсы и минусы керамического кирпича

К плюсам керамики относят натуральность, безвредность. Если сравнивать керамику и силикат, то глиняные изделия немного выигрывают по теплопроводности. Если смотреть на показатели, то разница совсем небольшая. Но дом из керамики намного теплее силикатного. Дело в большей теплоемкости. Глина может запасать больше тепла и поэтому дома из нее теплее.

Керамика проигрывает силикату по звукоизоляционным свойствам, а еще по геометрии и стабильности характеристик. В этом ее основные недостатки. Да еще в высокой цене, часто бывающих высолах, с которыми бороться очень и очень непросто. Еще один минус — даже лицевая поверхность редко бывает ровной.

Керамический кирпич — традиционный материал для строительства домов, которому не одна сотня лет

Все эти недостатки объяснимы. Керамический кирпич получают путем обжига сформованных заранее параллелепипедов из глиняного раствора. Глина — природный материал, который имеет различные свойства. Разные свойства различных видов глины и является основной причиной того, что размер керамического кирпича стабильностью не отличается. Причем значительный разброс может быть и в пределах одной партии. А от партии к партии, вообще, могут быть существенные отличия. Разные характеристики исходного сырья также являются причиной широкого разброса характеристик готового продукта. Таких как прочность и плотность.

Срок службы — реальность не радует

По многим характеристикам керамика должна быть лучше того же силиката, но реальность оказывается иной. В последнее время слишком часто встречается красный керамический кирпич рассыпающийся, полуразрушенный после нескольких лет эксплуатации в нормальных условиях. Причины — сложность технологии. Для хорошего результата нужна тщательная переработка и подготовка глины, чтобы исключить известковые вкрапления, которые являются причинами «отстрелов». А это дополнительное время в и без того не коротком цикле производства. И дополнительная энергия. И недешевое оборудование, которое покупают далеко не все.

Не самая хорошая картина

Второй момент: выдержка температурного режима обжига. Пережженный керамический кирпич в кладке ведет себя нормально. Выглядит только хуже, так как темнее «нормы». Это не так страшно. А вот недожженный разрушается, рассыпается. И этим он опасен. Обжигается керамика в печи долго, и так и тянет немного сократить время, чтобы увеличить производительность. Отсюда и недожог. Или от экономии топлива, которое далеко недешевое. Так что соблюдение технологии производства керамического кирпича — это высокая цена изделий. А дорогой кирпич покупают очень неохотно. Так что разрушившийся красный кирпич, скорее всего, имел невысокую цену. А всем известно, что дешевое хорошим бывает очень редко. Тем не менее бюджет на стройку обычно не резиновый и приходится экономить.

По теплопроводности и некоторым другим параметрам керамический кирпич должен быть лучше

Какой бы сложной ни была технология производства, европейские поставки имеют и геометрию близкую к идеальной, и размеры стандартные, и качество стабильное. Цена у них далеко не бюджетная, но проблемы с качеством — большая редкость. Так что если средства позволяют, стараются купить импортный кирпич. Отечественный глиняный, даже дорогой, пока стабильностью качества похвастаться не может. Именно поэтому, хотя по многим параметрам керамика должна быть лучше, все чаще выбор делают в пользу силиката. Потому что за вполне вменяемые деньги можно купить хорошего качества строительный материал. Его выбирают даже несмотря на то, что он намного «холоднее». Все равно для достижения требуемого уровня энергоэффективности, приходится утеплять и керамику тоже.

Виды и размер керамического кирпича по ГОСТу 530-2012

По размерам керамические изделия делят на кирпич и камень. Керамический строительный камень отличается только большей толщиной — не менее 140 мм. Глиняный кирпич бывает полнотелым и пустотелым, рядовым (строительным) или отделочным (лицевым). Керамический камень — только рядовой и только пустотный. Пустоты в глиняном камне или кирпиче могут располагаться, как параллельно постели (рабочей поверхности, на которую кладут раствор), так и перпендикулярно. Кроме того, стандарт определяет следующие виды изделий:

Строительный, лицевой и клинкерный — это основные типы керамического кирпича

  • Фасонный кирпич. Изделие, которое отличается по форме от параллелепипеда.
  • Доборный элемент. Форма разработана специально для завершения кладки.
  • С пазогребневой системой. Керамический камень, вертикальные грани которого имеют специальную форму для соединения без раствора. Размеры выступов не нормированы. Для этого типа материала есть два специальных размера:
    • Рабочая ширина камня. Это размер без учета пазогребневых выступов. Он формирует ширину кладки.
    • Нерабочая длина камня. Расстояние от одной вертикальной поверхности до другой с учетом выступов.

Еще камень и кирпич может быть со шлифованной или нешлифованной постелью (это та часть, на которую кладут раствор). Некоторые заводы выпускают материал с насечками на ложке. Этот тип удобно использовать, если стена будет штукатуриться. Насечки нужны для лучшей адгезии со штукатуркой.

Фасонные — разновидность отделочных изделий для формирования особого рельефа

Есть еще клинкерный кирпич. Он имеет более сложную технологию изготовления, что дает ему особые свойства. Он прочнее обычного строительного, имеет более низкое водопоглощение. Поверхность его идеально ровная и гладкая, что дает возможность использовать его как отделочный материал. Но это отдельная группа изделий.

Стандартные размеры и обозначение керамического строительного (рядового) кирпича

По стандарту ГОСТ 530-2012 есть следующие размеры керамического кирпича:

  • Нормального формата или одинарный. В маркировке ставят НФ. Имеет размеры 250*120*65 мм. По предыдущему стандарту (ГОСТ 530-2007) этот размер кирпича называли одинарным. Если это материал для кладки стен, ставят КР (рядовой). Может быть полнотелым или с вертикально расположенными пустотами. По тому же стандарту есть его подвиды:
  • С горизонтально расположенными пустотами — обозначение КРГ. Может быть только двух габаритов:
    • 1,4 НФ — 250*120*88 мм.
    • 1,8 НФ — 288*138*88 мм.

Это те размеры, которые определены для керамического кирпича новым стандартом. Что касается коэффициентов, их высчитывают как долю от объема, занимаемого керамическим кирпичом стандартного размера — 250*120*65 мм.

Виды и размеры керамического камня

Как видите, есть два подвида рядового керамического (строительного) кирпича, ширина которых составляет 138 мм. В то же время, норматив говорит о том, что все изделия, ширина которых 140 мм и более называют керамическим строительным камнем. Так что разница в два миллиметра, в данном случае, существенная.

Керамический камень — изделия укрупненного размера

Размер керамического камня приведен в таблицах. В скобках даны обозначения габаритов для изделий со шлифованными гранями. Вообще, возводить стены из крупного типа получается намного быстрее, да и квадратный метр кладки обходится дешевле. Экономия идет за счет раствора. Но работать одному не получится. Один блок, хоть они все пустотные, весить может больше десяти килограмм. Устанавливать их можно только вдвоем, как и корректировать положение. Кстати, стандарт допускает делать в боковых гранях пустоты под захваты (для более удобного переноса) общим объемом не более 13%. Это действительно облегчает работу с крупноформатными блоками.

Полнотелый и пустотелый

Полнотелый и пустотелый керамический кирпич, хоть и производится одинаково, имеет различное назначение. Материал без пустот идет на несущие стены, с пустотами берут для лучших характеристик по теплоизоляции. Так как наличие воздушных полостей делает материал «теплее». Он хуже проводит тепло, а значит лучше его сберегает. В маркировке полнотелый обозначается буквами «по», с пустотами — буквами «пу». Количество пустот и их объем нигде не указывается. Их надо смотреть «по месту».

Надо учесть такую особенность введенного стандарта. Полнотелый кирпич ГОСТ 530-2012 определяется как строительный материал без пустот или с пустотами меньше 13%.

Вообще, полнотелый кирпич используют для стен, на которые может приходиться большая нагрузка. Если вам важна несущая способность кладки, необходимо уточнять не только марку изделий по прочности, но и наличие пустот. В полнотелом кирпиче их размеры и расположение никак не нормируются (если их меньше 13%).

Вот такими могут быть изделия с пустотами и без

В пустотелом кирпиче и камне диаметр вертикальных цилиндрических пустот не может быть больше 20 мм. Если пустота квадратная или прямоугольная, ее сторона также не может быть больше 20 мм. Положение и размеры горизонтальных пустот выбираются произвольно, что стоит помнить. Определена только минимальная толщина наружной стенки. Она не должна быть меньше 12 мм для кирпича и 8 мм для камня.

Технические характеристики

Стандартом определены марки прочности, морозостойкость и класс плотности. Марки прочности отображают нагрузку, которую может вынести материал. Расшифровать эту величину просто. Цифра, которая идет за буквой «М» — это количество килограмм на сантиметр квадратный, которые материал выдерживает без разрушения. Пример: М150 обозначает, что керамический кирпич этой партии выдержит нагрузку в 150 кг/см².

Марки прочностиКерамического кирпичаМ100, М125, М150, М175, М200, М250, М300
Керамического камня М300, М400, М500, М600, М800, М1000
Клинкерного кирпича М25, М35, М50, М75, М100, М125, М150, М175, М200, М250, М300;
Кирпич и камень с горизонтальными пустотамиМ25, М35, М50, М75, М100
Морозостойкость F25, F35, F50, F75, F100, F200, F300.

Указаны марки прочности и морозостойкость для керамического камня и кирпича

Морозостойкость обозначается буквой F и цифрой. Цифра отображает количество циклов замерзания/размораживания, которые не вызывают изменения характеристик и внешнего вида. Например, F50 — 50 циклов замерзания и размораживания. Для внутренних перегородок в отапливаемых зданиях морозостойкость можно брать невысокую — все равно будет поддерживаться положительная температура.

Теплопроводность и коэффициент теплосопротивления

Класс плотности соотносится со средней плотностью материала, но от плотности зависит также энергоэффективность материала. Чем ниже плотность, тем лучше теплоизоляционные свойства. Но значительно снизить плотность для наружных стен не получится. Они должны нести определенный уровень нагрузки. Поэтому в последние годы кирпичный дом делают с утеплением.

Соотношение средней плотности изделия и класса плотности

Как работать с двумя последними таблицами? В маркировке указывается класс плотности. По этой характеристике можно узнать массу куба керамического кирпича. Она указана в первой таблице. Вторая таблица помогает сопоставить плотность материала и коэффициент теплопроводности кладки из него. Например, класс плотности керамического кирпича указан 1,0. Это значит, что куб должен весить 810-1000 кг, а кладка на минимальном слое клея после высыхания будет иметь коэффициент теплопроводности 0,20-0,24 Вт/(м*°C).

Группы керамического кирпича и блока по теплотехническим характеристикам кладки (при минимальном количестве раствора)

Стоит сказать, что по современным нормам ни один из типов кирпича не дает необходимого теплосопротивления. Разве что толщина стены будет более метра.

Кладка из керамического кирпича в полтора или два кирпича не отвечает современным требованиям по теплопроводности наружных стен

В этом случае выигрывает пустотный кирпич или строительный керамический блок, так как они имеют лучшие характеристики по теплопроводности. Стена будет на пару десятков сантиметров уже — не 147 см, например, а всего 105. Так что, в любом случае стоит рассматривать дополнительное утепление наружных стен.

Вес керамического кирпича

Вес керамического кирпича зависит от плотности и наличия/количества пустот. Точную цифру узнают в сопроводительных документах, и то, разброс в пределах одной партии до 10%.

В характеристиках указан вес кирпича разного типа: кладочного, отделочного, с пустотами и без

Если пользоваться старой терминологией, примерный вес керамического кирпича будет таким:

  • Одинарный (тип 1 НФ, размер 250*120*65 мм):
    • полнотелый (рядовой, кладочный, строительный) 3,3-3,6 кг/шт;
    • рабочий (рядовой, кладочный) пустотелый — 2,3-2,5 кг/шт;
    • облицовочный (лицевой, отделочный) пустотелый — 1,32-1,6 кг/шт.
  • Полуторный имеет массу (тип 1,4 НФ, габариты 250*120*88 мм):
    • полнотелый рядовой — 4,0-4,3 кг/шт;
    • пустотелый рядовой — 3,0-3,3 кг/шт;
    • лицевой пустотелый — 2,7-3,2 кг/шт.
  • Двойной весит (1,8 НФ 288*138*88 мм.) :
    • рядовой полнотелый — 6,6-7,2 кг/шт;
    • рядовой пустотный — 4,6-5,0 кг/шт.

Сравнение характеристик керамического кирпича — пустотного разной плотности, полнотелого

Вес приведем примерный, так как плотность и количество пустот у каждого завода может существенно отличаться. Количество пустот не регламентируется, так что отделочные материалы могут быть легкими.

Маркировка керамического кирпича

В маркировке керамического кирпича указывается полная информация о его типе. Проставляется размер кирпича в миллиметрах в формате: длина*ширина*высота. Обязательно указываются основные характеристики, приведенные выше. Чтобы расшифровать информацию, надо помнить условные обозначения материала каждого вида:

  • К — кирпич
  • Кл — клинкерный.
  • Р — рядовой (строительный).
  • Л — лицевой (отделочный, декоративный).
  • Г — горизонтальные пустоты.
  • По — полнотелый.
  • Пу — пустотный.
  • Ш — шлифованный.
  • Пг — пазогребневой.

В маркировке указаны все ключевые характеристики, включая размер и тип

После указания размеров, через косую идет указание класса прочности, класс средней плотности и морозостойкость. Приведем несколько примеров маркировки и ее расшифровку:

  • КР-р-по 250*120*65/1НФ/200/2,0/50. Читать надо это так: керамический кирпич (КР), рядовой (р), полнотелый (по). Размером 250*120*65 мм, 1НФ — формат и габариты. Далее идут: класс прочности М 200, класс средней плотности 2,0, что соответствует 1410-2000 кг/м³, морозостойкость F50 (50 циклов).
  • КРГ-л 250*120*88/1,4НФ/50/1,2/75. Звучит это так: кирпич керамический (КР), с горизонтальными пустотами (Г), лицевой (л). Размер керамического кирпича 250*120*88 мм, типоразмер 1,4 НФ. Класс прочности М50, класс средней плотности 1,2, что соответствует весу 1010-1200 кг/м³. Морозостойкость 75 циклов (F75).
  • КМ-пг 510/10,7НФ/150/0,8/75. Расшифровывается это обозначение так: камень керамический (КМ) с пазогребневым соединением (ПГ), габаритом рабочей части 510 мм, типоразмера 10,7 НФ. Марка прочности М150, класс плотности 0,8 (энергоэффективный), морозостойкость F 75.

На упаковке (палете) может быть нанесен логотип или другая информация по усмотрению производителя

Новый способ маркировки приближен к нормам ЕС. Стандарт не запрещает заводам в сопроводительных документах указывать дополнительные характеристики. Также можно наносить на упаковку дополнительную информацию, которая облегчает идентификацию производителя.

Множество видов кирпича

[Изображение вверху] Кирпич может быть небольшой строительной единицей из красной глины, но также может быть из многих других цветов и материалов. Предоставлено: Кэм Миллер, Flickr (CC BY-NC-ND 2.0)

.

Как я уверен, любой, кто часто посещает YouTube, обнаружил, что постоянно присутствующий список рекомендаций может привести вас в некоторые довольно странные кроличьи норы (особенно в последнее время).

Во время одного из моих недавних набегов на рекомендуемые анимационные адаптации обычных басен, я заметил сходство между версиями «Трех поросят», помимо основного сюжета.

В каждой версии третий поросенок построил свой дом из красных кирпичей!

Но кирпичи не всегда красные, о чем свидетельствует еще один анимационный пример.

Несмотря на то, что кирпичи использовались в качестве строительного материала в течение тысяч лет, многие домовладельцы, которые хотят отказаться от винила, с удивлением обнаруживают, что существует множество типов кирпичей на выбор, и не все эти кирпичи сделаны из глины.

Если кирпич не имеет ни красноватого цвета, ни состоит из глины, тогда какое значение означает кирпич?

Глиняный кирпич, ясеневый кирпич, красный кирпич, серый кирпич

Традиционно термин «кирпич» относится к небольшой единице строительного материала, состоящей в основном из глины.Минеральное содержание глины будет определять цвет кирпича: глины, богатые оксидом железа, станут красноватыми, а глины, содержащие много извести, будут иметь белый или желтый оттенок.

В настоящее время определение кирпича расширилось и теперь относится к любой небольшой прямоугольной строительной единице, которая соединяется с другими единицами с помощью цементного раствора (более крупные строительные единицы называются блоками). Глина по-прежнему является одним из основных материалов для кирпича, но другие распространенные материалы — это песок и известь, бетон и зола.

Силикатный кирпич

Кирпич из силиката кальция, широко известный как силикатный кирпич, содержит большое количество песка — около 88–92 процентов. Остальные 8–12 процентов в основном составляют известь. В отличие от традиционных глиняных кирпичей, которые обжигают в печах, силикатные кирпичи образуются, когда составляющие материалы соединяются вместе в результате химической реакции, которая происходит, когда влажные кирпичи высыхают под действием тепла и давления.

По сравнению с другими кирпичами силикатные кирпичи имеют более однородный цвет и текстуру, и для их скрепления требуется меньше раствора.Однако они не могут противостоять воде и огню в течение длительного времени, поэтому не подходят для укладки фундаментов или строительства печей.

Бетонный кирпич

По сравнению с глиняным кирпичом бетонный кирпич предлагает гораздо больше возможностей для дизайна. Бетонные кирпичи можно легко придать разнообразным формам — квадратам, треугольникам, восьмиугольникам — и можно добавить пигменты, чтобы изменить цвет бетонного кирпича. Кроме того, бетонные кирпичи имеют лучшую звукоизоляцию по сравнению с глиняными.

Эти преимущества делают бетон хорошим выбором с эстетической точки зрения. Однако, если вам нужен прочный и долговечный материал, лучше подойдут глиняные кирпичи. Бетон со временем сжимается, в то время как глина расширяется, что в конечном итоге обеспечивает более плотную изоляцию стен из глиняного кирпича, чем стены из бетонных кирпичей. Кроме того, глиняные кирпичи имеют лучшую теплоизоляцию, что со временем может привести к значительной экономии затрат на электроэнергию.

Зольный кирпич

Летучая зола является побочным продуктом горения угля и может оказывать вредное воздействие на здоровье человека и окружающую среду.Таким образом, предпринимаются многочисленные постоянные усилия по предотвращению попадания летучей золы в окружающую среду, включая тщательную утилизацию или повторное использование в других продуктах, таких как кирпичи.

Кирпичи из летучей золы состоят в основном из летучей золы и цемента. Они весят меньше, чем бетонные и глиняные кирпичи, и благодаря низкой абсорбционной способности достаточно хорошо выдерживают нагревание и воду. Однако высокие концентрации летучей золы в кирпиче могут привести к увеличению времени схватывания и более медленному развитию прочности во время строительства кирпича.

Конечно, эти типы кирпича не высечены в камне (даже если сами кирпичи таковыми).Это образцы обычных материалов, используемых для создания кирпичей, и исследователи часто экспериментируют с изменением уровней глины, песка, извести, летучей золы, цемента и других материалов в любом конкретном кирпиче, чтобы найти комбинации с оптимальными свойствами.

Строительный кирпич для экстремальных погодных условий

Поскольку экстремальные температуры становятся все более нормальным явлением, строительные материалы должны будут выдерживать более суровые циклы замораживания-оттаивания. Готовы ли кирпичи принять вызов?

Недавнее исследование Терезы Стришевской и Станислава Каньки, профессоров гражданского строительства из Краковского технологического университета в Польше, изучило, как кирпичи в каменных конструкциях, представляющих значительную историческую ценность, выдерживали циклическое замораживание и оттаивание за последние 70 лет.

Они обнаружили, что морозостойкость и морозостойкость кирпича являются результатом нескольких факторов, включая минеральный состав, структуру пористости и механическую прочность. Из этих факторов преобладающее влияние оказывает пористая структура.

«Показано, что кирпичи с относительно высокой долей пор диаметром менее 1 мкм в общей популяции пор подвергаются морозным повреждениям; т.е. им присуща недостаточная морозостойкость », — поясняют исследователи в статье.«Под влиянием циклического замораживания и оттаивания в реальных условиях эти кирпичи подвергаются повреждениям, но форма повреждений, то есть растрескивание, отслаивание или измельчение, зависит, прежде всего, от структуры пористости, то есть доли пор определенного диаметра. . »

Макроскопические и микроскопические изображения повреждений поверхности кирпичей в результате растрескивания. Пористая структура кирпича определяет повреждения, которые он будет испытывать при циклическом замораживании и оттаивании. Предоставлено: Stryszewska and Kańka, Materials 2019, 12 (7) (CC BY 4.0)

Целью исследования Стришевской и Каньки было найти способы прогнозирования долговечности кирпичных материалов — в конце концов, цель состоит в том, чтобы защитить, а не заменить оригинальные материалы в исторических местах. Однако знание влияния пористой структуры на способность кирпича выдерживать циклы замораживания-оттаивания является полезным знанием для строительства кирпичей, которые также могут лучше справляться с нашими все более суровыми циклами замораживания-оттаивания.

Какой кирпич вы бы выбрали?

В то время, когда Джеймс Орчард Холливелл опубликовал сборник «Детские стишки Англии» в 1886 году, люди, вероятно, считали само собой разумеющимся, что «Три поросенка» построят дом из ярко-красного кирпича — в то время лондонские архитекторы выбирали для строительства ярко-красные кирпичи. сделать здания более заметными в густом лондонском тумане.Но в настоящее время песчаная известь, бетон и летучая зола также, скорее всего, будут третьим предпочтительным кирпичом для свиней.

Как было показано в прошлой пятничной статье CTT , иногда художественная литература является лучшим способом преподавания концепций материаловедения. Итак, если бы вы были третьей свиньей, какой кирпич вы бы выбрали? И не забудьте при этом учитывать структуру пористости!

Статья в открытом доступе, опубликованная в Materials , — «Формы повреждения кирпичей, подвергнутых циклическому замораживанию и оттаиванию в реальных условиях» (DOI: 10.3390 / ma12071165).

Кирпич и плитка | строительный материал

Кирпич и черепица , изделия из конструкционной глины, выпускаемые в виде стандартных единиц, используемые в строительстве.

Кирпич, впервые произведенный в высушенной на солнце форме не менее 6000 лет назад и предшественник широкого спектра конструкционных глиняных изделий, используемых сегодня, представляет собой небольшую строительную единицу в форме прямоугольного блока, сформированного из глины или сланца. или смеси и обожжены (обожжены) в печи или печи для получения прочности, твердости и термостойкости.Первоначальная концепция древних кирпичников заключалась в том, что блок не должен быть больше, чем то, с чем легко справится один человек; сегодня размер кирпича варьируется от страны к стране, и кирпичная промышленность каждой страны производит кирпичи разных размеров, которые могут исчисляться сотнями. Большинство кирпичей для большинства строительных целей имеют размеры примерно 5,5 × 9,5 × 20 сантиметров (2 1 / 4 × 3 3 / 4 × 8 дюймов).

Структурная глиняная плитка, также называемая терракотовой, представляет собой более крупную строительную единицу, содержащую множество пустот (ячеек), и используется в основном в качестве подкладки для облицовки кирпичом или для оштукатуренных перегородок.

Структурную облицовочную плитку из глины часто глазируют для использования в качестве открытой отделки. Настенная и напольная плитка — это тонкий шамотный материал с натуральной или глазурованной отделкой. Карьерная плитка — это плотный шамотный продукт для полов, террас и промышленных помещений, где требуется высокая стойкость к истиранию или воздействию кислот.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас

Кирпич шамотный применяется в мусоросжигательных печах, котельных, промышленных и домашних печах, каминах.Канализационная труба обжигается и покрывается глазурью для использования в канализационных системах, системах промышленных сточных вод и общей канализации. Дренажная плитка бывает пористой, круглой, а иногда и перфорированной, и используется в основном для сельскохозяйственного дренажа. Кровельная черепица изготавливается в виде полукруглой (испанская черепица) и различной плоской черепицы, напоминающей сланец или кедровую трясину; он широко используется в странах Средиземноморья.

Существует также множество изделий из цемента и заполнителей, которые заменяют и обычно выполняют те же функции, что и изделия из конструкционной глины, перечисленные выше.Эти изделия из неглинистого кирпича и плитки кратко описаны в конце статьи. Однако основная тема этой статьи — кирпич и плитка из шамота.

шамотный кирпич и плитка — два самых важных продукта в области промышленной керамики. Для получения дополнительной информации о природе керамических материалов см. Статьи, представленные в Industrial Ceramics: Outline of Coverage, особенно статьи о традиционной керамике. О длительном рассмотрении основного применения шамотного кирпича и плитки см. Статью «Строительство зданий».

Обзор

Encyclopædia Britannica, Inc.

История кирпичного производства

Глиняный кирпич, высушенный на солнце, был одним из первых строительных материалов. Вполне возможно, что на реках Нил, Евфрат или Тигр после наводнения осевшая грязь или ил потрескались и образовали лепешки, которые можно было бы превратить в грубые строительные блоки для строительства хижин для защиты от непогоды. В древнем городе Ур в Месопотамии (современный Ирак) первая настоящая арка из обожженного на солнце кирпича была построена около 4000 г. до н. Э.Сама арка не сохранилась, но ее описание включает первое известное упоминание о минометах, отличных от грязи. Для скрепления кирпичей использовалась битумная слизь.

Обожженный кирпич, без сомнения, уже производили просто путем тушения огня с помощью сырцовых кирпичей. В Уре гончары открыли принцип закрытой печи, в которой можно было контролировать тепло. Зиккурат в Уре — образец ранней монументальной кирпичной кладки, возможно построенной из высушенного на солнце кирпича; ступени были заменены через 2500 лет (около 1500 г. до н.э.) обожженным кирпичом.

По мере того, как цивилизация распространялась на восток и запад от Ближнего Востока, росло производство и использование кирпича. Великая Китайская стена (210 г. до н. Э.) Была построена из обожженных и высушенных на солнце кирпичей. Ранними примерами кирпичной кладки в Риме были реконструкция Пантеона (123 г. н.э.) с беспрецедентным кирпичом и бетонным куполом, 43 метра (142 фута) в диаметре и высоте, а также Ванны Адриана, где для строительства использовались терракотовые столбы. поддерживающие полы, подогреваемые ревущими кострами.

Эмалирование, или остекление кирпича и плитки, было известно вавилонянам и ассирийцам еще в 600 г. до н. Э., Опять же, благодаря гончарному искусству.Великие мечети Иерусалима (Купол Скалы), Исфахана (в Иране) и Теграна являются прекрасными примерами глазурованной плитки, используемой в качестве мозаики. Некоторые из голубых оттенков этих глазурей не могут быть воспроизведены с помощью существующих производственных процессов.

Западная Европа, вероятно, использовала кирпич как строительную и архитектурную единицу больше, чем в любой другой области мира. Это было особенно важно в борьбе с разрушительными пожарами, которые хронически поражали средневековые города. После Великого пожара 1666 года Лондон превратился из деревянного города в город из кирпича исключительно для защиты от огня.

Кирпичи и кирпичные постройки были привезены в Новый Свет первыми европейскими поселенцами. Коптские потомки древних египтян, живших в верховьях Нила, назвали свою технику изготовления сырцового кирпича tōbe. Арабы передали это название испанцам, которые, в свою очередь, принесли искусство производства сырцовых кирпичей в южную часть Северной Америки. На севере Голландская Вест-Индская компания построила первое кирпичное здание на острове Манхэттен в 1633 году.

Керамические огнеупорные кирпичи | Огнеупорный кирпич для каминов

Огнеупорный кирпич, также известный как огнеупорный кирпич, представляет собой кирпич, используемый для внутренней облицовки каминов, обжиговых печей и печей.Это связано с тем, что они являются прочными изоляторами, которые помогают сделать приложения более энергоэффективными с минимальными потерями тепла. Керамический огнеупорный кирпич разработан, чтобы выдерживать чрезвычайно высокие температуры, которых не может выдержать обычный глиняный кирпич.

Плотный огнеупорный кирпич чаще всего используется в экстремальных химических и механических приложениях, таких как печь или дровяная печь, которые подвержены более высоким температурам и большему потенциальному повреждению. Для менее экстремальных применений, таких как электрическая печь, более легкие «кирпичи для обжига» являются идеальным выбором, поскольку они легче и более пористые, что делает их лучше изолирующими и их легче формовать.

Если вы планируете использовать огнеупорный кирпич для камина, печи или другого высокотемпературного оборудования, огнеупорный кирпич необходим для безопасной и эффективной эксплуатации.

Запросить подробности

В чем разница между огнеупорным кирпичом и стандартным глиняным кирпичом?

Между огнеупорным кирпичом и стандартным глиняным кирпичом есть несколько ключевых отличий:

  • Температурный допуск: Огнеупорные кирпичи обладают огнеупорными свойствами, которые позволяют им выдерживать температуры до 1800 градусов по Фаренгейту.При такой высокой температуре обычный глиняный кирпич треснет и повредится. Поскольку глиняный кирпич более пористый, чем огнеупорный кирпич, глиняный кирпич начнет повреждаться при температуре 1200 градусов по Фаренгейту.
  • Форма и цвет: В то время как обычные кирпичи могут иметь неравномерную форму, огнеупорные кирпичи имеют прямоугольную форму. Что касается цвета, обычные кирпичи различаются в зависимости от типа используемой почвы, но могут быть изготовлены в разных цветах. Однако огнеупорные кирпичи имеют естественный белый цвет. Чтобы добавить цвета огнеупорному кирпичу, в процессе изготовления добавляют разводы.
  • Энергоэффективность: Огнеупорный кирпич и стандартный глиняный кирпич энергоэффективны, но, поскольку огнеупорный кирпич лучше поглощает высокие температуры, он обеспечивает лучшую изоляцию. Это означает, что огнеупорный кирпич имеет более низкую теплопроводность, чем стандартный глиняный кирпич, что делает его более эффективным.
  • Состав: Огненный кирпич состоит в основном из кремнезема с меньшим процентным содержанием глинозема и других материалов, что делает его очень плотным. Стандартный глиняный кирпич содержит аналогичные химические вещества, но в менее концентрированных количествах для более легкой конструкции.

В целом, когда дело касается высокотемпературных применений, огнеупорный кирпич специально создан, чтобы противостоять этим условиям с большей эффективностью. А благодаря простой настройке они могут соответствовать любым вашим конкретным эстетическим потребностям.

Использование огнеупорного кирпича для строительства кострищ и каминов

Поскольку огнеупорный кирпич спроектирован так, чтобы выдерживать такие высокие температуры, он является идеальным кирпичом для каминов, обжиговых печей, печей и других высокотемпературных применений.В то время как обычный кирпич, камень и другие материалы будут трескаться от воздействия высоких температур, огнеупорный кирпич способен выдерживать воздействие огня в течение многих лет.

Огнеупорный кирпич можно найти разных размеров, и, поскольку он может окрашиваться в процессе производства, вы можете найти вариант цвета, который наилучшим образом соответствует вашим потребностям. Огнеупорный кирпич — привлекательный и надежный вариант для вашей костровой ямы и камина. Когда вы используете огнеупорный кирпич, можете быть уверены, что он огнестойкий и долговечный.Вы также можете извлечь выгоду из его естественной энергоэффективности, поскольку огнеупорный кирпич изолирует тепло, поэтому ваш камин и костровище остаются максимально теплыми.

Найти дилера по поставке огнеупорного кирпича

Для поставки огнеупорного кирпича у Nitterhouse Masonry есть все, что вам нужно. У нас есть два варианта калибровки, которые подойдут для любого места, где требуется устойчивость к экстремально высоким температурам.

Чтобы запросить дополнительную информацию об имеющихся у нас огнеупорных кирпичах, вы можете просто заполнить нашу онлайн-форму, и один из наших специалистов свяжется с вами.Вы также можете найти ближайшего к вам местного дилера, чтобы увидеть кирпич воочию и лично поговорить с нашими специалистами.

Мы находимся в Среднеатлантических штатах, а также в нескольких штатах Среднего Запада, что обеспечивает легкий доступ к нашим клиентам. Наш высококачественный огнеупорный кирпич — именно то, что вам нужно для вашего следующего проекта камина или костровой ямы, поэтому свяжитесь с нами сегодня, чтобы узнать больше о том, как Nitterhouse Masonry может вам помочь. Мы стремимся предоставлять нашим клиентам лучшие продукты и обслуживание, и мы гордимся тем, что заслуживаем похвалу наших постоянных клиентов.

Найти дилера

минералов | Бесплатный полнотекстовый | Разработка керамических материалов для производства кирпича из гранита

2.1. Материалы

Материалы, используемые в этом проекте, представляют собой обычные промышленные материалы, взятые непосредственно у компаний-производителей без изменения их характеристик. Эти материалы анализируются в методологии, поэтому их описание в этом разделе будет касаться их образования, происхождения и общих качеств.

Процесс сушки был проведен для удаления содержащейся в них воды и обеспечил, в ходе исследования, больший контроль всех переменных, в том числе влажности. Однако наличие влажности на заводе во время производственного процесса не повредит конечному материалу; это просто необходимо принять во внимание, чтобы не добавлять лишнюю воду и соблюдать оптимальные комбинации материалов, представленные в этом исследовании. Поэтому все испытания, описанные в методике, проводятся с сухими материалами и без влаги.

Использованные материалы и основа этой работы — глина и шлам для резки камня.

2.1.1. Глина

Используемая глина соответствует региону Хаэн, Испания. В этой географической области существует важная и традиционная промышленность по производству кирпича из красной глины; тот, который использовался в этом исследовании.

Красная глина оценивалась с помощью различных методических тестов; однако следует отметить, что он имеет высокое качество благодаря небольшому размеру частиц и не содержит опасных химических элементов или органических веществ.

Глина, используемая в исследовании, просеивалась через сито 0,25 мм; таким образом, получая материал, который можно легко обрабатывать в смеси.

2.1.2. Шлам для резки камня

Шлам для резки камня, использованный в данном исследовании, принадлежит компаниям, производящим поделочный камень, расположенным в непосредственной близости от города Житомир, Украина.

Эти шламы для резки камня производятся в процессе резки гранита для изготовления различных декоративных элементов.Использование воды для предотвращения нагрева оборудования приводит к образованию шлама при резке камня. Этот осадок от камнерезных работ откладывается в ямах для повторного использования воды после осаждения и сушки отходов за счет естественных процессов испарения. Он имеет уменьшенный размер частиц из-за процесса его образования.

Исходный материал, из которого он производится, очень похож на протяжении всего производственного процесса, а также используемого оборудования. Этот факт имеет важное значение для использования отходов, поскольку он прямо подразумевает, что физические и химические характеристики шламов камнерезных работ остаются постоянными во времени, на разных производствах и в разные годы.Поэтому легко определить подходящую комбинацию материалов с этими отходами, которая является стабильной и не должна постоянно изменяться в зависимости от свойств отходов. В отношении других типов отходов, таких как отстой сточных вод или строительный мусор или отходы сноса, это не так, поэтому трудно определить оптимальную комбинацию материалов.

Физические и химические испытания шламов камнерезных работ определены в методологии.

2.2. Методология

Методология, использованная в этой работе, состоит из серии логически упорядоченных тестов для оценки пригодности включения шламов камнерезных работ в керамические материалы.Таким образом могут быть идентифицированы критические процессы, а также особое внимание, которое необходимо уделить целям исследования.

Во-первых, в качестве основы для любого исследования включения отходов были оценены физические и химические характеристики исходных материалов. С этой целью были проведены испытания для определения химического состава обоих материалов, а также физических свойств, обуславливающих их смешивание, и их совместимости.

Впоследствии, после оценки пригодности шламов для резки камня и глины для производства керамики, различные группы образцов были сопоставлены с возрастающим процентным содержанием отходов, от 100% глины до 100% шламов резки камня.Таким образом можно было получить образцы во всех диапазонах возможностей. Эти образцы были согласованы и спечены для последующей оценки их физических свойств.

Наконец, в качестве основного ограничивающего фактора для правильного изготовления керамики были проведены испытания прочности на сжатие. Все группы образцов были испытаны, оценивая влияние прочности на сжатие на процент добавления шламов камнерезных пород. На основании этого исследования удалось получить максимальное включение шламов камнерезных пород в керамику, а также широкий спектр возможных комбинаций с различными физическими и прочностными свойствами для конкретных случаев.

Эта методология подробно описана в следующих четырех основных блоках: анализ исходных материалов, согласование образцов и физические испытания, цветовой анализ и испытание на прочность при сжатии. В свою очередь, в разделе «Результаты» она описана аналогично представленной схеме.

2.2.1. Анализ исходных материалов

Физико-химический анализ свойств исходного материала является фундаментальным для установления критериев, которым необходимо следовать в исследовании.Этот анализ предоставляет информацию, необходимую для оценки совместимости материалов, а также наличия определенных химических элементов, которые следует контролировать. Характеристика отходов имеет важное значение для их включения в материал, особенно для снижения воздействия на окружающую среду в связи с их размещением на свалке. Например, использование отходов с загрязнителями и элементами, вредными для окружающей среды, на свалках или заполнение дорожной инфраструктуры не предполагает эффективного повторного использования, поскольку их вымывание может привести к большему загрязнению грунтовых вод, чем их осаждение на свалке.Следовательно, требуется задача определения характеристик, которая будет обусловливать жизнеспособность включения отходов в новый материал или процесс.

Физические испытания, проведенные вокруг глины и шламов камнерезных пород, представляют собой испытания плотности частиц в соответствии со стандартом UNE-EN 1097-7 и индекса пластичности в соответствии со стандартами UNE 103103 и UNE 103104. Плотность Частицы рассчитывали пикнометрическим методом с последовательными измерениями массы и объемов в воде образца.С другой стороны, пластичность материалов для керамики важна, поскольку отражает их пластичность, а также процентное содержание глинистых частиц в материалах. Расчет индекса пластичности выполняется методом Касагранде, при этом предел жидкости оценивается с помощью чашки Касагранде и предел пластичности соответствующим методом. Оба теста точно определяют совместимость между глинами и шламами при резке камня, а также возможные объемные поправки, если плотность между двумя материалами сильно различается.

После оценки физических свойств была проведена химическая характеристика обоих материалов. С этой целью были проведены тесты элементного анализа на оборудовании TruSpec Micro марки LECO (LECO, Сент-Джозеф, Мичиган, США), потери при возгорании и рентгеновская флуоресценция на оборудовании ADVANT′XP + компании Thermo Fisher. торговая марка (Thermo Fisher Scientific, Уолтем, Массачусетс, США).

Тест элементного анализа определяет процентное содержание углерода, азота, водорода и серы, присутствующих в образце.Для этого образец сжигается и анализируются газы от горения. В свою очередь, потеря при прокаливании отражает потерю веса после воздействия на образец температуры 1000 ± 10 ° C, отражая процентное содержание органических веществ или карбонатов, присутствующих в образце. Потеря веса также может быть связана с преобразованием некоторых химических соединений или окислением некоторых химических элементов. Это важный тест для керамического сырья, поскольку температура аналогична температуре процесса спекания и отражает свойства конечного материала.Рентгеновский флуоресцентный тест определяет элементный состав проанализированных образцов, показывая неорганический состав материалов количественным методом.

С помощью определенных тестов можно будет оценить наличие вредных химических элементов, элементов, которые будут определять конечный продукт, или физических свойств, которые будут определять совместимость материалов. Таким образом можно оценить пригодность использования шламов для резки камня в керамике.

2.2.2. Соответствие образца и физические испытания

После оценки пригодности исходных материалов различные группы образцов были сопоставлены с процентным содержанием глины и шламов камнерезных работ. Первую группу составляют образцы, состоящие только из глины. Эта группа была создана для того, чтобы иметь возможность легко сравнивать свойства керамических шламов и шламов для резки камня в разном процентном соотношении по сравнению с традиционным материалом, оценивая вариации физических и механических свойств.Впоследствии были выполнены различные группы образцов с прогрессивным процентом замещения глины шламом для резки камня, равным 10%, до тех пор, пока не была получена последняя группа образцов со 100% шламом для резки камня. Таким образом были получены группы образцов, которые были равномерно распределены во всех возможных комбинациях глин и камнерезных шламов. Состав различных групп согласованных образцов описан в Таблице 1.

Тестовые образцы из каждой группы были согласованы в соответствии с той же процедурой.Во-первых, оба элемента, глина и шламы для резки камня, были смешаны в соответствующих процентах в соответствии с семейством. Позже их гомогенизировали и добавляли 10% воды в расчете на процентное содержание сухой смеси по массе, и снова смешивали. Следует отметить, что процент добавленной воды был эмпирически оценен как наиболее подходящий для этого типа материала и процесса уплотнения, более высокий процент вызывает выделение воды, а более низкий процент ведет к более низкой плотности и, следовательно, более низкой прочности на сжатие.Смесь упомянутых выше материалов преобразовывалась в стальную матрицу с внутренними размерами 60 мм в длину и 30 мм в ширину, получая образцы аналогичных пропорций. Уплотнение производили на автоматическом испытательном прессе модели AG-300kNX коммерческого бренда Shimadzu (Шимадзу, Киото, Япония). Эту конформацию выполняли с постоянной скоростью до тех пор, пока не было достигнуто максимальное напряжение уплотнения, 50 ± 1 МПа, это растяжение поддерживали в течение 1 мин, и матрицу снимали с испытательного пресса.Образцы, полученные этим методом, отражают аналогичные значения материалов, изготовленных в промышленности, а также материалов, изготовленных методом экструзии.

Затем образцы различных групп сушили при температуре 105 ± 2 ° C в течение 24 часов для постепенного удаления избытка воды и предотвращения образования трещин в процессе спекания. Эти высушенные образцы были измерены и взвешены для последующих испытаний.

Спекание образцов проводилось в муфельной печи после загрузки всех образцов.Температуру повышали до 4 градусов Цельсия в минуту с комнатной до 950 ± 10 ° C. Эту температуру поддерживали в течение одного часа, и образцы снова охлаждали с той же скоростью.

Спеченные детали были подвергнуты серии стандартизированных испытаний для расчета их физических свойств, испытаний, которые необходимы в области керамических материалов для кирпича. Эти испытания предназначены для определения потери веса, линейной усадки (стандарт UNE-EN 772-16), капиллярного водопоглощения (стандарт UNE-EN 772-11), поглощения холодной воды (стандарт UNE-EN 772-21), открытой пористости и насыпная плотность (стандарт UNE-EN 772-4).

Вариации веса различных образцов до и после процесса спекания отражают линейную усадку и потерю веса образцов. Оба явления очень распространены в керамике, и их необходимо контролировать и ограничивать. Проведение этих испытаний на всех группах образцов точно отражало, как обе характеристики изменяются в зависимости от процентного содержания шламов при резке камня. С другой стороны, испытание на капиллярное водопоглощение состоит из частичного погружения образца в воду при комнатной температуре на короткое время в 1 мин, затем его взвешивания и вычисления этого отношения по разнице масс.Таким образом, это тест, который идеально отражает связь между порами керамического материала; характеристика, которая оказывает значительное влияние на другие свойства, такие как термическая или звукоизоляция.

В свою очередь, испытание на поглощение холодной воды состоит из полного погружения образцов на длительный период — 24 часа. По истечении этого времени образцы снова взвешивают и сравнивают с сухой массой, определяя водопоглощение. Таким образом, испытание отражает поглощающую способность керамики, что является фундаментальным фактом, который необходимо учитывать, когда эти керамические элементы находятся на открытом воздухе.

Наконец, испытание на открытую пористость и объемную плотность рассчитывается с помощью трех типов измерений веса образцов, сухого веса, веса водопоглощения и веса в погруженном состоянии, для этих расчетов, очевидно, необходимо использовать гидростатические весы. Из стандартизованных соотношений и взятия плотности воды по отношению к температуре испытания были рассчитаны открытая пористость и объемная плотность. Эти свойства керамики оказывают значительное влияние на несколько основных свойств, таких как прочность, легкость материала, теплоизоляция, звукоизоляция и т. Д.Следовательно, важно изучить изменение этих свойств в зависимости от процентного содержания шламов при резке камня.

2.2.3. Анализ цвета

Цвет — одна из характеристик керамики. Эта характеристика, не ограниченная нормативными требованиями, ограничивается керамической промышленностью. Процессы обеспечения качества в промышленности ограничивают максимально допустимые отклонения в цвете производимых элементов. Таким образом, кирпичи создадут одинаковые оттенки в конструкции.Следовательно, это очень важный фактор, который нельзя игнорировать.

Отходы, которые при добавлении к керамическому материалу создают материал с приемлемыми физическими и механическими свойствами, но который резко меняется по цвету, будут отбракованы в большинстве промышленных процессов.

На основании сказанного следует изучить изменение цвета и оценить причины, по которым оно возникает. В основном изменение цвета керамики обусловлено ее химическим составом при условии, что процесс формования и спекания керамики аналогичен.Таким образом, в этом разделе будут представлены изображения образцов и отражено исследование причин изменения цвета и определение тех химических соединений, которые присутствуют в наиболее влиятельном шламе при резке камня.

Затем, и в этом отношении, чтобы субъективно определить цвет различных семейств керамики, цветовые координаты каждого семейства в основных цветах (красный, зеленый и синий) будут измерены колориметром (RGB- 2, PCE, Мешеде, Германия). Таким образом, можно графически воспроизвести цвет различных керамических материалов, изготовленных с увеличивающимся процентным содержанием камнерезного шлама, и определить, приемлемы ли они для производственной отрасли.

2.2.4. Испытание на прочность при сжатии

Кирпич — это керамический продукт, не имеющий аналогов в строительстве благодаря своим характеристикам, упомянутым выше, а также благодаря своей прочности. Другими словами, механическое сопротивление керамического материала является одним из фундаментальных свойств, которые должен обеспечивать продукт, и в этом отношении оно ограничивается европейскими правилами.

Испытание на прочность на сжатие проводилось с помощью автоматического испытательного пресса, который непрерывно регистрировал значения напряжения и деформации образца, определяя точку схлопывания образца.Для проведения испытания образцы сушили, а затем испытывали в вышеупомянутом прессе при комнатной температуре. Испытание проводилось с постоянной скоростью нагрузки в секунду и выполнялось одинаково для всех согласованных образцов из разных групп в соответствии с упомянутым стандартом.

Европейский стандарт в этом отношении устанавливает минимальную прочность, ниже которой материал считается бракованным, на уровне 10 МПа. Следовательно, керамические семейства, которые демонстрируют более низкое сопротивление, чем указанное, будут отклонены, устанавливая предел включения шламов камнерезных работ в керамику.С другой стороны, семейства образцов с результатами, превышающими предел, установленный правилами, будут считаться приемлемыми и могут быть использованы для производства кирпичей.

Почему глазурованные керамические блоки для кирпичной кладки? — Rauch Clay Sales Corporation

Керамическая глазурованная плитка и кирпич не горят

В случае пожара он не будет выделять ядовитых или токсичных паров, как многие другие изделия для стен. Рейтинги пожарной безопасности непревзойденные: нулевая плотность дыма, нулевое распространение пламени и нулевое содержание топлива.Граффити легко очищается экологически чистыми моющими средствами; следовательно, никакие вредные выбросы не загрязняют атмосферу или землю. Эти продукты также идеально подходят для наружной кладки несущих полых стен, обеспечивая энергоэффективность стен зданий.

Изделия из остекления для экстерьера — это керамические полые или полые стеклянные блоки. Глазурованная керамическая отделка обжигается на поверхности при температуре выше 2000 °, что создает непроницаемую связь с телом. Покрытие устойчиво к царапинам, химически стойким и обеспечивает отличную прочность и долговечность в условиях замораживания / оттаивания.Они доступны в широком диапазоне размеров, форм и цветов. Стеклянные изделия для наружного применения предназначены для использования на открытом воздухе, но могут использоваться и в интерьере.

Глазурованные изделия для интерьера — это сплошные или полые блоки из кирпичной кладки с глазурованной керамической поверхностью, которая плавится в процессе обжига. Керамический кирпич является популярным выбором для общественных мест из-за большого разнообразия цветовых решений, размеров и типов плитки. Граффити легко счистить, а покрытие никогда не потрескается, не отслаивается, не обесцвечивается и не выцветает. Посмотреть видео о чистке керамической глины >

Стеклянные изделия для внутренних и наружных работ соответствуют или превосходят требования ASTM C-1405 и / или C-126.

Дополнительные преимущества:

  • Может использоваться как для несущих, так и для ненесущих применений
  • Керамическое покрытие устойчиво к выцветанию и воздействию большинства химикатов
  • Обжиг в печи при более чем 2000 °, превышает отраслевые стандарты
  • Устойчивость к граффити, пятнам, ударам, истиранию и атмосферным воздействиям
  • Огнестойкий; не горит и не выделяет токсичных паров
  • Усиленные блоки соответствуют требованиям сейсмостойкости и безопасности
  • Стоимость, конкурентоспособная на весь срок службы здания
  • Экологически чистый

Влияние на эстетическое качество и физические свойства

Соль и лед кристаллизуются в порах.Механизм роста льда и соли

аналогичен и приводит к аналогичному типу повреждений

[33]. Скорость зародышеобразования соли выше в порах диаметром

от 1 до 10

л

м [34]. В порах размером менее 0,1

л

м соль требует

значительной степени насыщения для осаждения, тогда как в порах

размером более 10

л

м соль препятствует образованию достаточного давления

обязательно повредить структуру пор [35].Пористые материалы с высокой пористостью

и меньшими порами более склонны к распаду; Вероятно, это является причиной того, что кирпичи 1 и 2 являются самыми слабыми по отношению к кристаллизации солей

[36]. Напротив, увеличение размера пор кирпича 3 должно увеличить также морозостойкость [30]. Самый слабый отклик на инея

кирпича 3 с большим количеством пор с радиусом больше

, чем 0,1

l

м и самой высокой микропористостью, предполагает, что кристаллы

могут, однако, эффективно расти внутри материала. , повредив его.Такое поведение

наблюдал Равальоли [37] в кровельной черепице, в которой

пор с размером в диапазоне от 0,25 до 1,4

л

м страдают больше

морозами [38,39].

Это свидетельство показывает, что, хотя кирпич с добавлением осадка

представляет собой действительную замену коммерческому кирпичу 1 (желтый-

низкий) со многих точек зрения, он может быть восприимчивым при использовании в холодном климате

.

Наши результаты подтверждают возможность экономических и экологических

способов улучшения кирпичной промышленности и разработки новых продуктов

с отходами, и, следовательно, снижения потребности в георесурсах

.

Благодарности

Это исследование финансировалось исследовательской группой RNM179 Хунты

Андалусии и исследовательским проектом MAT2012-34473. Исследование

финансировалось INPS — Gestione Ex Inpdap

(Direzione Regionale Veneto), которое предоставило грант PhD «Доктор J»

в период 2013-2015 гг. Авторы благодарны фабрике

SanMarco-Terreal, в частности Франко Фаваро и

Франческо Стангерлину, а также Габриэлю Уолтону, отредактировавшему английский текст

.

Ссылки

[1] М. Донди, Б. Фаббри, М. Марсильи, Rassegna delle esperienze di riciclaggio di

Индустриальные промышленные предприятия и урбанизация производства латерици, Индустрия латерици 51

(1998) 160–160 178.

[2] М. Донди, М. Марсигли, Б. Фаббри, Переработка промышленных и городских отходов при производстве кирпича

— обзор (Часть I), Tile Brick Int. 13 (1997) 218–225.

[3] М. Донди, М. Марсигли, Б. Фаббри, Переработка промышленных и городских отходов при производстве кирпича

— обзор (Часть 2), Tile Brick Int.13 (1997) 302–309.

[4] Демир И. Влияние добавления органических остатков на технологические свойства глиняного кирпича

// Управление отходами. 28 (2008) 622–627.

[5] С.П. Раут, Р.В. Ралегаонкар, С.А.Мандавган, Разработка экологически безопасных строительных материалов

с использованием твердых промышленных и сельскохозяйственных отходов: обзор

кирпичей, образующих отходы, Констр. Строить. Матер. 25 (2011) 4037–4042.

[6] Чжан Л. Производство кирпича из отходов — обзор, Констр.Строить.

Матер. 47 (2013) 643–655.

[7] П. Муньос Веласко, М.П. Моралес Ортис, М.А. Мендивил Хиро, Л. Муньос Веласко,

Обожженные глиняные кирпичи, полученные путем добавления отходов в качестве экологически безопасного строительства

материал — обзор, Констр. Строить. Матер. 63 (2014) 97–107.

[8] С. Невес Монтейро, C.M. Фонтес Виейра, О производстве обожженного глиняного кирпича

из отходов: критическое обновление, Констр. Строить. Матер. 68 (2014) 599–

610.

[9] К. Борис, М.Э. Борредон, Э. Ведренне, Г. Виларем, Разработка экологически чистых кирпичей из пористой обожженной глины

с использованием порообразователей: обзор, J. Environ.

Управлять. 143 (2014) 186–196.

[10] Дж. Санчо, Б. Фернандес, Х. Айяла, П. Гарсия, Дж. К. Ресио, К. Родригес, Дж. Л. Бернардо,

Метод получения электролитического марганца из отходов производства ферросплавов,

в: 1st Spanish National Конференция по достижениям в переработке материалов и

Eco-Energy, Мадрид, 2009 г.

[11] В.Д. Скотт, Дж. Лав, Количественный электронный зондовый микроанализ, Джон Вили и

Сыновья, Нью-Йорк, 1983.

[12] Г. Чен, Дж. Ван, Подготовка морского геологического сертифицированного справочного материала

материалы полиметаллические конкреции GSPN- 1 и морские отложения GSMS-1 из Центрального Тихого океана

, Геостандарт. Геоанал. Res. 22 (1998) 119–125.

[13] UNI EN 13755, Методы испытаний природного камня — определение поглощения воды

при атмосферном давлении, CNR-ICR, Рим, 2008.

[14] NORMAL 29/88, Misura dell’indice di asciugamento (индекс сушки), CNR-ICR,

Rome, 1988.

[15] UNI EN 1925, Методы испытаний природного камня — определение водопоглощения

Коэффициент

по капиллярности, CNR-ICR, Рим, 2000.

[16] UNI EN 1926, Методы испытаний природного камня — определение одноосной прочности на сжатие

, ICNR-ICR, Рим, 2007.

[17] UNI EN 12371, Методы испытаний природного камня — определение морозостойкости,

CNR-ICR, Рим, 2010.

[18] UNI EN 12370, Методы испытаний природного камня — определение устойчивости к солевой кристаллизации

, CNR-ICR, Рим, 2001.

[19] G. Cultrone, E. Sebastián, K. Elert, MJ de Ла Торре, О. Казалла, К. Родригес —

Наварро, Влияние минералогии и температуры обжига на пористость кирпича

, J. Eur. Ceram. Soc. 34 (2004) 547–564.

[20] А. Гуальтьери, М. Беллотто, Г. Артиоли, М. Кларк, Кинетическое исследование последовательности реакций муллита каолинит-

.Часть II: Образование муллита, Phys. Chem. Шахтер. 22

(1995) 215–222.

[21] Г. Култроне, Э. Себастьян, М.Дж. де ла Торре, Минералогические и физические свойства

полнотелого кирпича с добавками, Констр. Строить. Матер. 19 (2005) 39–

48.

[22] Л. Маритан, Л. Нодари, К. Маццоли, А. Милано, У. Руссо, Влияние условий обжига

в керамических изделиях: экспериментальное исследование на глинистых в органическом веществе

, заявл. Clay Sci. 31 (2006) 1–15.

[23] П. Думинуко, Б. Мессига, М.П. Риккарди, Процесс обжига природных глин. Примерно

микроструктур и связанных фазовых составов, Termodinamica Acta 321

(1998) 185–190.

[24] М.П. Риккарди, Б. Мессига, П. Думинуко, Подход к динамике глины

обжиг, Appl. Clay Sci. 15 (1999) 393–409.

[25] G. Cultrone, C. Rodriguez-Navarro, E.M. Sebastián, O. Cazalla, M.J. de la Torre,

Реакции карбонатной и силикатной фаз во время обжига керамики, Eur.J. Mineral. 13

(2001) 621–634.

[26] П. Кемп, Chemismus Tunesischer Wasser Und Landklassification Der

Steppenstzone Oglat Merteba in Sud-Tunisien, Dietrich Reimer, Berlin, 1985.

[27] K.S.W. Синг, Д. Х. Эверетт, Р. А. У. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T.

Siemieniewska, Представление данных о физической сорбции для систем газ / твердое тело со специальной ссылкой на определение площади поверхности и пористости

, Pure

Appl.Chem., ИЮПАК 57 (4) (1985) 603–619.

[28] S. Storck, H. Bretinger, W.F. Майер, Характеристика микро- и мезопористых твердых тел

методами физадсорбции и анализа размера пор, Прикл. Катал. А 174

(1998) 137–146.

[29] Г. Култроне, Э. Себастьян, Добавление летучей золы в глинистые материалы для улучшения качества полнотелого кирпича

, Констр. Строить. Матер. 23 (2009) 1178–1184.

[30] М. Донди, М. Марсигли, И. Вентури, Микроструктура и механические свойства глиняных кирпичей

: сравнение быстрого и традиционного обжига, Br.Ceram.

Пер. 98 (1999) 12–18.

[31] К. Элерт, Г. Култроне, К. Наварро, Э. Себастьян Пардо, Прочность кирпичей, использованных в

консервации исторических зданий — влияние композиции и микроструктуры

, J. Cult. Наследие 4 (2003) 91–99.

[32] К. Колетти, Г. Култроне, Л. Маритан, К. Маццоли, Как противостоять новой промышленной проблеме

совместимого, устойчивого производства кирпича: исследование различных типов

коммерчески доступных кирпичей, Прил.Clay Sci. 124–125 (2016) 219–226.

[33] Г. Шерер, Кристаллизация в порах, Cem. Concr. Res. 29 (1999) 1347–1358.

[34] А. Арнольд, К. Цендер, Солевое выветривание памятников, в: Сохранение

памятников в Средиземноморском бассейне: Влияние прибрежной среды

и солевые брызги на известняк и мрамор, Труды 1-го Международного

Симпозиум, 1990, 31–58.

[35] Х. Мартинес-Мартинес, Д. Бенавенте, М. Гомес-Херас, Л.Марко-Кастаньо, М.А.

Гарсия-дель-Кура, Нелинейный распад строительных камней при замораживании – оттаивании

процессы выветривания, Констр. Строить. Матер. 38 (2013) 443–454.

[36] Д. Бенавенте, Л. Линарес-Фернандес, Г. Култроне, Э. Себастьян, Влияние микроструктуры

на стойкость кирпича к повреждению кристаллизацией соли, Mater.

Struct. 39 (2006) 105–113.

[37] А. Равальоли, Оценка морозостойкости прессованного керамического изделия

на основе распределения пор по размерам, Пер.Br. Ceram. Soc. 75

(1976) 92–95.

[38] К. Икеда, Х.-С. Ким, К. Джайзу, А. Хигаси, Влияние температуры обжига на морозостойкость

кровельной черепицы, J. Eur. Ceram. Soc. 24 (2004) 3671–3677.

[39] М.И. Санчес де Рохас, Ф.П. Марин, М. Фриас, Э. Валенсуэла, О. Родригес,

Влияние методов испытаний на замерзание, состава и микроструктуры на мороз

Оценка долговечности глиняных кровельных черепиц, Констр. Строить. Матер. 25 (2011)

2888–2897.

[40] D.L. Уитни, Б. Эванс, Сокращения названий породообразующих минералов,

Am. Минеральная. 95 (2010) 185–187.

C. Coletti et al. / Строительство и строительные материалы 124 (2016) 219–227 227

Использование огнеупорных кирпичей в керамических плитах — приготовление на угле из керамики Naked Whiz

Советы и подсказки по огнеупорному кирпичу

Что такое огнеупорные кирпичи? —
Огненные кирпичи бывают

специально изготовленные жаропрочные кирпичи для использования в каминах, циркуляционных насосах, печах, грилях для барбекю, печах и топках.Они изготовлены из керамического материала и могут выдерживать температуру до 2000 градусов. Вот что Википедия говорит о огненных кирпичах:


«Огнеупорный кирпич, огнеупорный кирпич или огнеупорный кирпич — это блок из огнеупорного керамического материала, который используется в футеровке печей, обжиговых печей, топок и каминов. Огнеупорный кирпич построен в первую очередь для того, чтобы выдерживать высокие температуры, но также обычно имеет низкую теплопроводность для более высокая энергоэффективность. Обычно плотные огнеупорные кирпичи используются в приложениях с экстремальными механическими, химическими или термическими нагрузками, например, внутри дровяной печи или печи, которая подвержена истиранию от древесины, флюсованию из золы или шлака и высокие температуры.В других, менее суровых условиях, например, в печи, работающей на электричестве или природном газе, лучшим выбором будут более пористые кирпичи, обычно известные как «кирпичи для обжиговых печей». Они слабее, но они намного легче, их легче формировать, и они намного лучше изолируют, чем плотные кирпичи. В любом случае огнеупорные кирпичи не должны раскалываться, а их прочность должна хорошо сохраняться при резких перепадах температуры ».

Поскольку большинство современных керамических плит работают до этой температуры, очевидно, что вы можете безопасно использовать огнеупорные кирпичи в керамической плите.Кирпичи песочного цвета, несколько хрупкие. Вы можете взять два из них, измельчить их вместе и довольно легко превратить их в песчано-песчаную пыль. Они не такие твердые, как традиционные кирпичи из красной глины. Фотография справа известна как «раскол». Он похож на полноразмерный огнеупорный кирпич, но только вдвое меньшей толщины. Возможно, вы захотите купить огнеупорные кирпичи обоих размеров, так как они по-разному используются в керамической кулинарии. Кроме того, огнеупорный кирпич можно разбить на части, чтобы получить особые размеры.Например, разрезанные пополам полноразмерные огнеупорные кирпичи станут хорошими столбами, на которые можно разместить вторую сетку, чтобы получилась приподнятая.

Почему я должен использовать огнеупорные кирпичи в керамической плите? —
Во-первых, не стоит использовать традиционные кирпичи в керамической плите. Они склонны к растрескиванию при воздействии высокой температуры, и это растрескивание может быть довольно сильным. Есть также предположения, что мокрый кирпич может взорваться при нагревании. Мы не можем сказать наверняка, правда это или нет.Неофициальные опросы дают неоднозначные результаты, а поиск в Интернете был безрезультатным. Мы склонны говорить, что они не взорвутся. Возможно, самый убедительный аргумент пришел от человека, задавшего вопрос: «Видите ли вы взрывающиеся кирпичи при пожаре в доме?» Мы также нашли сообщения в сети о взрывах камней в кострах, если камни были добыты из реки. Но все, что мы нашли, — это предостережения против использования мокрых камней. Мы не нашли актуальной фактической информации по этой теме. В долгосрочной перспективе мы обычно придерживаемся подхода «лучше перестраховаться, чем сожалеть», поэтому, если вы собираетесь использовать кирпичи, используйте огнеупорные кирпичи.Однако нельзя сказать, что с обычным кирпичом случится что-то плохое.

Но зачем вам использовать кирпичи? Что ж, их можно использовать как барьер между горячим огнем и пищей для непрямого приготовления. Кроме того, они могут добавить в плиту керамическую массу, чтобы выровнять температуру. Наконец, они являются безопасным материалом для подпорки решеток, чтобы сделать решетку приподнятой, если вы не хотите использовать шайбы, гайки и болты из нержавеющей стали.


Где я могу достать огнеупорные кирпичи? —

Вы должны найти огневые кирпичи на любом хорошем кирпичном дворе.
Если там, где вы живете, строят камины, то где-то поблизости должен быть поставщик огневого кирпича для местных каменщиков. Время от времени мы находили целые огнеупорные кирпичи в Home Depot и Lowes, но только от случая к случаю. Обжиговые кирпичи из таких источников, как кирпичные дворы и супермаркеты для ремонта дома, довольно дешевы, менее доллара каждый.

Если вы не можете найти их на месте, в крайнем случае, хотя и в крайнем случае несколько дорого, вы можете заказать коробку с шестью порциями.
через Ace Hardware.Если у вас есть ближайший к вам магазин оборудования Ace, вы можете заказать их в Интернете и бесплатно доставить в ваш магазин. В качестве альтернативы вы можете просто перейти на
их веб-сайт www.acehardware.com закажет их для доставки на дом. Эти конкретные кирпичи производятся Rutland и известны как Rutland item 604. Вы можете поискать на веб-сайте ACE «Огненный кирпич Rutland», и вы найдете их. Если вы пойдете в местный хозяйственный магазин Ace, вы можете попросить их поискать элемент Ace 4066171. Кирпичи имеют размер 9 дюймов на 4.5 дюймов на 1,25 дюйма в толщину, и они весят почти 4 фунта каждый. (3 фунта, 12,5 унций, если вам нужно знать!) И цена составляет 18,99 доллара за коробку. Мы сказали, что они довольно дорогие, не так ли?

Еще один источник дорогих огнеупорных кирпичей в небольших количествах — это Northern Tool and Equipment.


Как мне использовать огнеупорные кирпичи? —

Первое, для чего вы можете использовать огнеупорные кирпичи в керамической плите, — это повысить уровень приготовления камня для пиццы. Если вы подумаете над этим очень долго, вы поймете, что для того, чтобы использовать кожуру пиццы, чтобы положить пирог на ваш камень
а затем удалите его, камень должен быть на достаточно высоком уровне в плите, чтобы он очищал отверстие.Ты не можешь

засуньте кожуру в плиту и приготовьтесь получить пиццу. Итак, для пиццы кирпичи служат двум целям: во-первых,
чтобы поднять камень и, во-вторых, добавить еще один слой керамики между пиццей и огнем. Добавление большего количества керамики помогает поддерживать постоянную температуру камня для длительного приготовления нескольких пирогов. На фотографии справа вверху вы можете увидеть, как мы использовали четыре огнеупорных кирпича, чтобы обеспечить основу, на которую можно положить камень для пиццы. Сначала поместите сетку на костровое кольцо, а затем положите на нее кирпичи.Затем вы можете положить камень для пиццы на кирпичи. Вы можете использовать пять кирпичей, чтобы сделать большую основу для большего камня для пиццы, как на фото слева. Вы также можете положить шестой кирпич спереди, чтобы заполнить пробел, показанный на этой фотографии.



Еще одна причина использовать огнеупорные кирпичи в керамической плите — создать барьер между огнем и пищей для непрямого
Готовка. Кроме того, мы считаем, что лучше поставить поддон на керамический слой, чтобы защитить его от огня, предотвратить подгорание сока и т. Д.Итак, начиная с основания из пяти кирпичей, показанного на фотографии выше, слева, вы можете добавить поддон и решетку, чтобы в итоге получить установку справа для непрямого приготовления. (Опять же, вы можете добавить шестой кирпич по краю, чтобы заполнить промежуток между передним кирпичом и тремя кирпичами, лежащими на нижней решетке, если ваш поддон меньше, чем мы показываем, или если вы не собираетесь использовать поддон вообще.)



И последнее, что мы можем придумать, — это взять целый огнеупорный кирпич (в отличие от расколов, показанных на фотографиях выше) и разрезать его пополам.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *