Виды коррозии, защита и хранение металлических изделий
Виды коррозии, защита и хранение металлических изделий
Несоблюдение правил хранения может привести к порче продукции. Гарантия производителя на изделия из оцинкованной стали предоставляется только в том случае, если соблюдены все условия транспортировки, хранения и монтажа изделий.
Основой оцинкованных изделий служит стальной лист, на котором под внешним воздействием атмосферы возможно возникновение коррозии. Чтобы этого избежать тонколистый стальной прокат обработан несколькими защитными слоями: цинковым и несколькими полимерными покрытиями, которые препятствуют прямому контакту стали с внешней средой.
Если оцинкованная сталь подвергается воздействию влаги (дождь, роса, конденсат) в среде, где не хватает кислорода, то вода быстро реагирует с цинком и постепенно разъедает покрытие. Наиболее распространённые условия, в которых появляется белая ржавчина, — изделия хранятся в заводской упаковке и/или плотно прижатыми друг к другу.
Физико-химические процессы разрушения металла
Коррозия — это самопроизвольно протекающий процесс разрушения металла, вследствие химического или электрохимического взаимодействия металла с окружающей средой.
Различают химическую и электрохимическую коррозию.
Химическая коррозия — коррозия металла в газовой и жидкостной среде, не проводящей ток. Коррозия этого вида состоит в окислении металла в результате непосредственного его химического взаимодействия с окружающей средой. В таких средах, как воздух, продукты сгорания каменного угля и других видов топлива (нефть, бензин, керосин, смазочные масла) обычно развивается химическая коррозия.
Но наличие даже небольших количеств влаги в указанных веществах может в большей или меньшей степени сообщить коррозии электрохимический характер. Химическая коррозия в чистом виде — достаточно специфическое явление, преобладающее в средах, достаточно закрытых для окружающего природного воздействия. Большое практическое значение имеет электрохимическая коррозия.
Электрохимическая коррозия
Электрохимическая коррозия имеет характер анодного окисления металла, которое может протекать по двум различным механизмам:
– гальванокоррозия — окисление металла, являющегося анодом самопроизвольно возникающей гальванической цепи;
– электрокоррозия — окисление металла, являющегося анодом своеобразной электролизной системы, самопроизвольно возникающей под влиянием тока от внешнего источника.
Гальванокоррозия
При гальванокоррозии основная масса металла обычно играет роль анода. В качестве материала катода могут служить самые разнообразные вещества, но обязательно являющиеся электронными проводниками. Сюда относятся более электронофильные металлы, чем анод. Например, по отношению к железному аноду такими металлами являются Sn, Pb, Cu, Hg, Ag и т.п. Роль катодов может выполнять и ряд электропроводящих неметаллических материалов, среди которых назовём ржавчину, зёрна графита, угля, цементита (карбида железа Fe3C), шлаковые включения в металл и т.д.
Процессы, протекающие при гальванокоррозии, рассмотрим на двух примерах, представляющих практический интерес: коррозию железа в контакте: а) с цинком и б) с оловом во влажном воздухе.
а) Коррозионный процесс в гальванопаре Zn/Fe. Цинк, как сравнительно более химически активный металл, подвергается анодному окислению и переходит в состояние ионов.
Реакция на аноде**: 2Zn – 4e- → 2Zn** (окисление).
Реакция на катоде: 2h3O + O2 + 4e- → 4OH’ (восстановление).
Вторичная реакция: 2Zn** + 4OH’ → 2Zn(OH)2.
В процессе работы коррозионной гальванопары Zn/Fe окисляется, разрушается цинк. За счёт электронов последнего железо предохраняется от коррозии.
б) Коррозионный процесс в гальванопаре Sn/Fe. В данном случае железо более химически активный металл, чем олово. Катодом гальванопары будет олово, а анодом — железо.
Реакция на аноде**: 2Fe – 4e- → 2Fe** (окисление).
Реакция на катоде: 2h3O + O2 + 4e- → 4OH’ (восстановление).
Они приводят к образованию бурой ржавчины.
Таким образом, в процессе работы рассматриваемой гальванопары окисляется и разрушается железо, а олово остается без изменения.
На практике подобные явления встречаются при коррозии оцинкованного и луженого железа. В случае нанесения на железо менее химически активного металла (Sn, Cu, Ni, Cr, Ag, Au), для придания поверхности декоративных и других полезных свойств, защита железа происходит путем его изоляции от внешней среды. При повреждении внешнего защитного слоя начинают протекать описанные реакции и железо ржавеет.
Коррозионные элементы могут возникать во всех случаях, когда в присутствии электролита соприкасаются металлы, различающиеся между собой электродными потенциалами.
Особо нужно отметить влияние температуры. Повышение температуры ускоряет физические и химические процессы. В водной среде это особенно заметно при температуре около 60°С. При температуре около 70°С в гальванопаре Zn/Fe может произойти изменение потенциала цинка, в результате чего цинковое покрытие становится катодам, а железо анодом. Отмечают, что изменению полярности цинка способствуют низкое содержание в воде кислорода и высокое бикарбонатов. В таких условиях коррозировать будет железо.
Электрокоррозия
К электрокоррозии относятся случаи электрохимической коррозии металлов, протекающие под влиянием электрического тока от внешнего источника. Здесь в основе явления, как уже отмечалось, лежит самопроизвольно возникающий процесс электролиза. В качестве примера рассмотрим электрокоррозию под влиянием так называемых блуждающих токов.
Металлические листы с полимерным покрытием, сложенные в пачку, представляют собой электрический конденсатор, где металлическая основа листа представляет собой обкладки конденсатора, а полимерное покрытие — диэлектрический слой между обкладками. В следствие неравномерности нагрева листов, воздействия внешних источников энергии и других факторов окружающей среды между различными листами пачки могут возникать разности электрического потенциала.
В воде любого типа в большем или меньшем количестве содержатся растворенные соли, коллоидные и взвешенные вещества, живые микроорганизмы, в воду попадают частицы пыли и дыма. Поэтому при изучении поведения цинка и цинковых покрытий в водных средах воду следует рассматривать как коррозионный электролит. Если торцевую часть листов с разностью электрических потенциалов поместить в раствор соли, которым могут являться атмосферные осадки и конденсат, то возникает естественный процесс электролиза. На одном из листов, на его торцевой части, будет происходить анодное окисление металла, т.е. его коррозия.
Состав электролита, в особенности величина его рН, существенно влияет на скорость коррозии. Так, повышение концентрации Н’-ионов (кислая среда), как правило, резко убыстряет разрушение металла.
Повышение концентрации ОН’-ионов (щелочная среда) в электролите замедляет коррозию таких металлов, как Fe, Mg в следствии образования гидроокисных защитных плёнок.
У металлов Al, Zn, Pb повышение щелочности среды на разрушение этих металлов действует убыстряющим образом т.к. гидроокиси этих металлов растворимы в щелочах. Описанная особенность этих металлов является причиной такого явления как белая ржавчина.
Белая ржавчина на цинковом покрытии
Цинк — сравнительно реактивный металл, он активно реагирует с кислотами и щелочами. Лучше всего он проявляет свои антикоррозионные свойства в рН нейтральной среде. Долговечность цинкового покрытия зависит от формирования оксидно-карбонатной пленки. После окончательного формирования оксидно-карбонатной пленки уровень коррозии цинковых покрытий становится очень низким — не более двух микрон в год в нейтральной среде.
Химические реакции, требуемые для формирования этой плёнки, занимают некоторое время (от нескольких недель до нескольких месяцев):
1. Фаза окисления 2Zn + O2 = 2ZnO
2. Фаза гидратации 2Zn = 2h3O + O2 = 2Zn(OH)2
3. Карбонизации 5Zn(OH)2 = 2CO2 + 2ZnCO3.3Zn(OH)2 + 2h3O
На последнем этапе окончательно формируется трудно растворимый основной карбонат цинка, который обеспечивает надежную антикоррозионную защиту цинковому слою при негативном воздействии влаги. В условиях относительно сухой среды протекают все три реакции, и на поверхности оцинкованного изделия формируется оксидно-карбонатная плёнка, будучи почти непроницаемой для кислорода и влаги, резко ограничивает дальнейший процесс взаимодействия цинка с кислородом.
Иное происходит, если изделие свежеоцинкованное или на нём присутствуют места без сформированного плёночного покрытия (в частности, срезы профилированной продукции) хранится в условиях, когда на него воздействует дождь, роса, конденсат, а подвод углекислого газа и кислорода, способствующего образованию плотной оксидно-карбонатной пленки затруднен. В этом случает происходят только фазы окисления и гидратации. В результате получаются гидроксид и оксид цинка — вещества в виде белого порошка, обладающие низкой адгезионной способностью к поверхности, легко пропускающие кислород к цинку, допускающие его последующее окисление и развитие процессов образования белой ржавчины.
Еще одним случаем, представляющим опасность образования белой ржавчины, являются участки соприкасающихся между собой поверхностей оцинкованных изделий с уже окончательно сформировавшейся оксидно-карбонатной плёнкой. В этих местах задерживается дождевая влага (или конденсируется влага из воздуха при нахождении изделий на воздухе при температуре ниже точки росы), а испаряется она в последнюю очередь. Во всех природных водах присутствует углекислота, которая может находиться в воде в виде растворенного газа СО2 и недиссоциированных молекул Н2СО3 или ионов НСО3- и СО3в2-. Углекислота и присутствующие в воде нитраты, сульфаты, хлориды без доступа кислорода разрушают образующуюся на поверхности цинка оксидно-карбонатную пленку и тем самым усиливают коррозию, приводящую к образованию белой ржавчины.
При очень длительном хранении (от полугода) оцинкованных изделий с полимерным покрытием в неблагоприятных условиях, оксид и гидроксид цинка — вещества в виде белого порошка может выделяться и на поверхности полимерного покрытия (в особенности на обратной стороне листа, который как правило покрыт только грунтовым полимерным слоем).
В благоприятных (для белой ржавчины) условиях разъедание цинка может происходить при уровнях коррозии в 20–50 раз больших, чем обычно предполагается.
Условия хранения и эксплуатации
Из всего вышеизложенного можно сделать следующие выводы.
Цинковое покрытие стальных изделий хорошо работает как защитный слой в нейтральной сухой или влажной воздушной среде и при кратковременном воздействии воды со свободным доступом кислорода. При таких условиях работает эффект гальванопары Zn/Fe — эффект оксидно-карбонатной пленки. Такие условия соответствуют нормальным условиям эксплуатации изделий.
В случае долговременного нахождения стальных оцинкованных изделий, сложенных в пачку, в водной среде при ограниченном доступе кислорода и повышенной температуре (более 70°С), начинают протекать реакции, при которых защитные эффекты перестают работать. Происходит активное разрушение защитного слоя. Как правило, такие негативные условия складываются при неправильном хранении изделий. При нарушении условий хранения риск поражения коррозией значительно выше, чем при неправильной эксплуатации или монтаже.
Правила хранения оцинкованных изделий:
• Изделия хранятся в заводской упаковке НЕ более 1 (одной) недели с даты поставки. Пачки в заводской упаковке укладываются на ровное место на бруски с шагом 0,5 м.
• При необходимости хранения профилированной продукции более 1 (одной) недели ее размещают под навесами или в крытых неотапливаемых, сухих помещениях без прямого воздействия солнечных лучей и осадков (в соответствии с ГОСТ 7566).
Изделия следует распаковать (снять заводскую упаковку), расположить на ровной поверхности и переложить каждый лист одинаковыми рейками (штабель высотой до 70 см).
• Хранение на открытом воздухе допускается только на период монтажных работ. Изделия должны быть расположены под небольшим наклоном в 3° так, чтобы между ними обеспечивались свободная циркуляция воздуха и слив воды.
• Максимальный срок хранения во всех вышеперечисленных условиях не должен превышать 2 (двух) месяцев с даты поставки.
Используемая литература:
- «Общая химия» учебники и учебные пособия для высших сельскохозяйственных учебных заведений. А.Г. Кульман. Издательство «Колос» 1968.
- «Курс общей химии» учебник для студентов вузов. Коровин Н.В., Масленникова Г.Н., Гуськова Л.Г. и др. под ред. Коровина Н.В. Высш. школа 1981.
- «Защита от коррозии, старения и биоповреждений машин, оборудовани и сооружений» Справочник в 2т. Т1. Под ред. Герасименко А.А. М. Машиностроение. 1987.
- «Основы учения о коррозии и защите металлов» Дж. Скалли. Перевод с английского проф. А.В. Шрейдера. Издательство «Мир», Москва 1978.
- СТБ 1527-2005 «Профили металлические холодногнутые для наружной облицовки фасадов зданий и комплектующие изделия к ним».
- СТБ 1382-2003 «Профили металлические холодногнутые для кровель и комплектующие изделия к ним».
- ГОСТ 7566-2018 «Металлопродукция. Правила приемки, маркировка, упаковка, транспортирование и хранение».
Коррозия металлов и методы защиты от нее
Коррозия металлов и методы защиты от нее
Категория:
Промышленные материалы
Коррозия металлов и методы защиты от нее
Коррозией называется разрушение металла вследствие химического или электрохимического взаимодействия его с окружающей средой. Коррозии подвержены все металлы, но в зависимости от условий эксплуатации, хранения и транспортирования протекает она по-разному. Примерно около 10% выплавляемых черных металлов ежегодно теряются в виде коррозионной пыли.
Первоначальная стадия коррозии выражается в потускнении поверхности металла, появлении на изделиях темных точек или участков, окрашенных в другой цвет, например медь становится зеленоватой.
Коррозию классифицируют по механизму разрушения (окисления), виду агрессивной среды, характеру разрушения.
В зависимости от механизма разрушения коррозию подразделяют на химическую и электрохимическую.
Химическая коррозия характеризуется только окислительными процессами. Протекает она в неэлектролитах — бензине, керосине, сухих газах. Этот вид коррозии часто наблюдается при высоких температурах. При комнатной температуре металлы также окисляются с образованием на поверхности оксидной пленки, которая препятствует проникновению агрессивных элементов вглубь.
Электрохимическая коррозия в отличие от химической характеризуется наличием окислительных и восстановительных процессов при протекании электрического тока. Она является наиболее распространенной и сложной. К ней относится коррозия в атмосферных условиях, в морской и речной воде, в электролитах.
По виду агрессивной среды коррозию подразделяют на атмосферную, морскую и речную, почвенную, коррозию в электролитах и др.
Атмосферная коррозия является наиболее распространенной, на ее долю приходится около 80% всех коррозионных разрушений. Атмосферную коррозию подразделяют по виду атмосферы и по виду климата. По виду атмосферы ее делят на промышленную, сельскую, приморскую и др. Наиболее агрессивной является приморско-про-мышленная среда, так как в ней наряду с высокой влажностью частыми туманами находятся и различные газы (сернистые, серные, оксиды углерода и др.), поступающие с промышленных предприятий. По виду климата атмосферную коррозию подразделяют на коррозию в умеренном и коррозию в тропическом климате. Последняя значительно сильнее действует на металл, так как кроме высокой влажности влияет температура, солнечная радиация и другие факторы.
Морской и речной коррозией называют разрушение металла соответственно в морской или речной воде, например разрушение корпусов, гребных винтов морских и речных судов, лодок и т. п.
Почвенная коррозия вызывает коррозию металлов в почве, например, водопроводных, газовых или других металлических труб, свай, находящихся в земле.
Коррозией в электролитах называется разрушение металла в водных растворах кислот, щелочей и солей. Этот вид коррозии встречается при травлении металлов, в химической промышленности.
По характеру разрушения металла коррозию подразделяют на четыре вида (рис. 1).
Защита металлов от коррозии. Для защиты металлов от коррозии применяют следующие методы: повышение коррозионной стойкости металлов, снижение агрессивности среды, отделение металла от агрессивной среды-
Повышение коррозионной стойкости металлов осуществляют легированием, удалением из металлов вредных примесей (очистка), модифицированием, химико-термической обработкой.
Рис. 1. Виды коррозии: а —сплошная; б — местная; в—язвенная; г — межкристаллитная
Для снижения агрессивности среды уменьшают концентрацию агрессивных газов, удаляют влагу, пыль и другие загрязнения. Эти способы особенно эффективны при хранении металлоизделий на складах и при их транспортировании. Для этой цели в складских помещениях поддерживают постоянную температуру и влажность, помещения хорошо проветриваются.
Кроме того, применяют ингибиторную защиту, т. е. в агрессивную среду вводят вещества, уменьшающие степень ее коррозионной агрессивности, называемые ингибиторами. Чаще всего ингибиторы вводят в смазки.
Защиту металлов от коррозии, связанную с их отделением от агрессивной среды, осуществляют нанесением металлических и неметаллических покрытий, смазочных масел (индустриальные масла).
По способу нанесения металлические покрытия подразделяют на гальванические и нанесенные горячим методом. Для гальванических покрытий характерна пористость. Поэтому их наносят на предварительно нанесенные слои других металлов. Например, при покрытии металла никелем в качестве подслойного материала применяют медь. Сущность гальванического метода заключается в осаждении металла из раствора солей на изделии при пропускании через раствор электрического тока. При горячем методе готовое изделие опускают на несколько секунд в расплавленный металл, предназначенный для нанесения покрытий. Этим методом наносят покрытия из легкоплавких металлов.
В качестве неметаллических покрытий для защиты от коррозии применяют лакокрасочные, силикатные, полимерные и другие покрытия. Защищают металл и путем создания оксидных пленок на его поверхности — оксидированием.
—
Коррозией называется процесс разрушения металлов и сплавов под воздействием внешней среды. Типичными примерами коррозии является ржавление стали, разъедание подводных частей судов морской водой, разрушение деталей химической Аппаратуры под влиянием растворов солей и кислот, от действия высокой температуры и т. д.
Известно, что от коррозии ежегодно пропадает до 10% всех добываемых металлов. Это огромные потери, и борьба с ними приобретает серьезное значение. Для борьбы с коррозией применяют следующие способы:
Оксидирование — нагрев стального изделия и охлаждение-в минеральном масле. На поверхности стали образуется тонкая пленка окисла черного цвета, защищающая ее от ржавления. Такое покрытие называется оксидированием или воронением стали. Оксидирование часто применяется для покрытия оружия: пистолетов, охотничьих ружей и т. п.
При сухом воронении стальные изделия покрывают тонким слоем асфальтового лака и выдерживают в течение 10—20 минут в печи при температуре 300—450°. Поверхность изделия приобретает блестящий синий или черный цвет.
Легирование — процесс сплавления стали с другими металлами, значительно улучшающими ее свойства. Коррозионная стойкость стали возрастает, если в ее состав входят не поддающиеся окислению на воздухе металлы. Таким путем получают нержавеющую сталь, в которой легирующими элементами являются хром (12—18%) или никель (4—8%).
Металлическое покрытие. В целях экономии стойких от коррозии металлов ими покрывают металлические изделия только поверхностным тонким слоем. Для покрытия стальных изделий широко применяются цинк (оцинкованное железо) и олово (луженая жесть). Это покрытие осуществляется погружением деталей с тщательно очищенной поверхностью в расплавленный металл или гальваническим способом с помощью постоянного электрического тока (никелирование, хромирование).
Окраска. Самый простой и распространенный способ предохранения металлов от коррозии — это покрытие их красками, лаками и эмалями. После высыхания растворителя изделие оказывается защищенным слоем краски или эмали, который, кроме защиты от коррозии, придает металлу желаемый цвет.
Смазка. Предохранение металлических изделий от коррозии хорошо осуществляет слой густого масла, которое выполняет эту роль так же, как краски, но в отличие от них легко может быть Удалено в случае необходимости. Смазка маслом широко применяется для защиты от коррозии станков, инструментов, оружия, особенно в период их храпения (консервация).
—
Коррозией называется непроизвольное разрушение металлов и сплавов под действием окружающей среды. Коррозия называется химической, если она происходит под действием сухих газов или жидкостей-неэлектролитов, т. е. жидкостей, не проводящих электрический ток (бензин, керосин, смола и т. п.). Коррозия называется электрохимической, если она происходит при взаимодействии с жидкостями-электролитами, т. е. проводящими электрический ток (вода, пар, водяные растворы солей, щелочи, кислоты и т. п.).
Так как в подавляющем большинстве случаев металлические детали работают в условиях влажной атмосферы или газов, а некоторые детали, например в подводных лодках, пароходах и гидросамолетах, при непосредственном контакте с растворами солей (морская вода), то явление коррозии может наблюдаться на них в сильной степени, если не будут приняты меры, замедляющие скорость коррозии или устраняющие ее вовсе.
Статистические данные показывают, что количество металлов и сплавов, пришедших в негодность от коррозии, составляет около 40% от общего количества выплавленных металлов и сплавов.
Мировые потери от коррозии за время с 1890 по 1923 г. выражаются огромной цифрой — 706 млн. т из 1760 млн. т общего количества чугуна и стали, выплавленных за тот же период.
При химической коррозии металл или сплав, взаимодействуя с газами при высоких температурах или с жидкостями-неэлектролитами, образует различные химические соединения (оксиды, сульфиды, и др.), т. е. разрушается, переходя в неметаллическое состояние.
При электрохимической коррозии металл или сплав, взаимодействуя с электролитом, переходит в раствор в виде положительно заряженных частиц (ионов).
Происходящие здесь процессы напоминают действие простейшего гальванического элемента. Если такой элемент состоит из пластинки цинка, опущенной в раствор сернокислого цинка, и пластинки меди, опущенной в раствор сернокислой меди, то при замыкании этих пластинок возникает электрический ток и электроны начинают перемещаться от цинковой пластинки к медной. Это значит, что у цинка большая способность превращаться в положительно заряженные частицы (ионы).
В силу этих причин цинковая пластинка в гальваническом элементе в процессе работы будет разрушаться. Образование микрогальванических элементов вследствие неоднородности структуры при взаимодействии металлов и сплавов с жидкостями-электролитами и составляет сущность процесса электрохимической коррозии.
Реклама:
Читать далее:
Виды коррозионных разрушений
Статьи по теме:
Защита от коррозии металла: катодная, анодная, покрытия
Металлы используются человеком с доисторических времен, изделия из них широко распространены в нашей жизни. Самым распространенным металлом является железо и его сплавы. К сожалению, они подвержены коррозии, или ржавлению — разрушению в результате окисления. Своевременная защита от коррозии позволяет продлить срок службы металлических изделий и конструкций.
Защита от коррозии
Виды коррозии
Ученые давно борются с коррозией и выделили несколько основных ее типов:
- Атмосферная. Происходит окисление вследствие контакта с кислородом воздуха и содержащимися в нем водяными парами. Присутствие в воздухе загрязнений в виде химически активных веществ ускоряет ржавление.
- Жидкостная. Проходит в водной среде, соли, содержащиеся в воде, особенно морской, многократно ускоряют окисление.
- Почвенная. Этому виду подвержены изделия и конструкции, находящиеся в грунте. Химический состав грунта, грунтовые воды и токи утечки создают особую среду для развития химических процессов.
Исходя из того, в какой среде будет эксплуатироваться изделие, подбираются подходящие методы защиты от коррозии.
Характерные типы поражения ржавчиной
Различают следующие характерные виды поражения коррозией:
- Поверхность покрыта сплошным ржавым слоем или отдельными кусками.
- На детали возникли небольшие участки ржавчины, проникающей в толщину детали.
- В виде глубоких трещин.
- В сплаве окисляется один из компонентов.
- Глубинное проникновение по всему объему.
- Комбинированные.
Виды коррозионных разрушений
По причине возникновения разделяют также:
- Химическую. Химические реакции с активными веществами.
- Электрохимическую. При контакте с электролитическими растворами возникает электрический ток, под действием которого замещаются электроны металлов, и происходит разрушение кристаллической структуры с образованием ржавчины.
Коррозия металла и способы защиты от нее
Ученые и инженеры разработали множество способов защиты металлических конструкций от коррозии.
Защита от коррозии индустриальных и строительных конструкций, различных видов транспорта осуществляется промышленными способами.
Зачастую они достаточно сложные и дорогостоящие. Для защиты металлических изделий в условиях домовладений применяют бытовые методы, более доступные по цене и не связанные со сложными технологиями.
Промышленные
Промышленные методы защиты металлических изделий подразделяются на ряд направлений:
- Пассивация. При выплавке стали в ее состав добавляют легирующие присадки, такие, как Cr, Mo, Nb, Ni. Они способствуют образованию на поверхности детали прочной и химически стойкой пленки окислов, препятствующей доступу агрессивных газов и жидкостей к железу.
- Защитное металлическое покрытие. На поверхность изделия наносят тонкий слой другого металлического элемента — Zn , Al, Co и др. Этот слой защищает железо о т ржавления.
- Электрозащита. Рядом с защищаемой деталью размещают пластины из другого металлического элемента или сплава, так называемые аноды. Токи в электролите текут через эти пластины, а не через деталь. Так защищают подводные детали морского транспорта и буровых платформ.
- Ингибиторы. Специальные вещества, замедляющие или вовсе останавливающие химические реакции.
- Защитное лакокрасочное покрытие.
- Термообработка.
Порошковая покраска для защиты от коррозии
Способы защиты от коррозии, используемые в индустрии, весьма разнообразны. Выбор конкретного метода борьбы с коррозией зависит от условий эксплуатации защищаемой конструкции.
Бытовые
Бытовые методы защиты металлов от коррозии сводятся, как правило, к нанесению защитных лакокрасочных покрытий. Состав их может быть самый разнообразный, включая:
- силиконовые смолы;
- полимерные материалы;
- ингибиторы;
- мелкие металлические опилки.
Отдельной группой стоят преобразователи ржавчины — составы, которые наносят на уже затронутые коррозией конструкции. Они восстанавливают железо из окислов и предотвращают повторную коррозию. Преобразователи делятся на следующие виды:
- Грунты. Наносятся на зачищенную поверхность, обладают высокой адгезией. Содержат в своем составе ингибирующие вещества, позволяют экономить финишную краску.
- Стабилизаторы. Преобразуют оксиды железа в другие вещества.
- Преобразователи оксидов железа в соли.
- Масла и смолы, обволакивающие частички ржавчины и нейтрализующие ее.
Грунт-преобразователь ржавчины
При выборе грунта и краски лучше брать их от одного производителя. Так вы избежите проблем совместимости лакокрасочных материалов.
Защитные краски по металлу
По температурному режиму эксплуатации краски делятся на две большие группы:
- обычные, используемые при температурах до 80 °С;
- термостойкие.
По типу связующей основы краски бывают:
- алкидные;
- акриловые;
- эпоксидные.
Лакокрасочные покрытия по металлу имеют следующие достоинства:
- качественная защита поверхности от коррозии;
- легкость нанесения;
- быстрота высыхания;
- много разных цветов;
- долгий срок службы.
Большой популярностью пользуются молотковые эмали, не только защищающие метал, но и создающие эстетичный внешний вид. Для обработки металла распространена также краска-серебрянка. В ее состав добавлена алюминиевая пудра. Защита металла происходит за счет образования тонкой пленки окиси алюминия.
Краска-серебрянка
Эпоксидные смеси из двух компонентов отличаются исключительной прочностью покрытия и применяются для узлов, подверженных высоким нагрузкам.
Защита металла в бытовых условиях
Чтобы надежно защитить металлические изделия от коррозии, следует выполнить следующую последовательность действий:
- очистить поверхность от ржавчины и старой краски с помощью проволочной щетки или абразивной бумаги;
- обезжирить поверхность;
- сразу же нанести слой грунта;
- после высыхания грунта нанести два слоя основной краски.
При работе следует использовать средства индивидуальной защиты:
- перчатки;
- респиратор;
- очки или прозрачный щиток.
Способы защиты металлов от коррозии постоянно совершенствуются учеными и инженерами.
Методы противостояния коррозионным процессам
Основные методы, применяемые для противодействия коррозии, приведены ниже:
- повышение способности материалов противостоять окислению за счет изменения его химического состава;
- изоляция защищаемой поверхности от контакта с активными средами;
- снижение активности окружающей изделие среды;
- электрохимические.
Первые две группы способов применяются во время изготовления конструкции, а вторые – во время эксплуатации.
Методы повышения сопротивляемости
В состав сплава добавляют элементы, повышающие его коррозионную устойчивость. Такие стали называют нержавеющими. Они не требуют дополнительных покрытий и отличаются эстетичным внешним видом. В качестве добавок применяют никель, хром, медь, марганец, кобальт в определенных пропорциях.
Нержавеющая сталь AISI 304
Стойкость материалов к ржавлению повышают также, удаляя их состава ускоряющие коррозию компоненты, как, например, кислород и серу — из стальных сплавов, а железо – из магниевых и алюминиевых.
Снижение агрессивности внешней среды и электрохимическая защита
С целью подавления процессов окисления во внешнюю среду добавляют особые составы — ингибиторы. Они замедляют химические реакции в десятки и сотни раз.
Электрохимические способы сводятся к изменению электрохимического потенциала материала путем пропускания электрического тока. В результате коррозионные процессы сильно замедляются или даже вовсе прекращаются.
Пленочная защита
Защитная пленка препятствует доступу молекул активных веществ к молекулам металла и таким образом предотвращают коррозионные явления.
Пленки образуются из лакокрасочных материалов, пластмассы и смолы. Лакокрасочные покрытия недороги и удобны в нанесении. Ими покрывают изделие в несколько слоев. Под краску наносят слой грунта, улучшающего сцепление с поверхностью и позволяющего экономить более дорогую краску. Служат такие покрытия от 5 до 10 лет. В качестве грунта иногда применяют смесь фосфатов марганца и железа.
Защитные покрытия создают также из тонких слоев других металлов: цинка, хрома, никеля. Их наносят гальваническим способом.
Покрытие металлом с более высоким электрохимическим потенциалом, чем у основного материала, называется анодным. Оно продолжает защищать основной материал, отвлекая активные окислители на себя, даже в случае частичного разрушения. Покрытия с более низким потенциалом называют катодными. В случае нарушения такого покрытия оно ускоряет коррозию за счет электрохимических процессов.
Металлическое покрытие также можно наносить также методом распыления в струе плазмы.
Применяется также и совместный прокат нагретых до температуры пластичности листов основного и защищающего металла. Под давлением происходит взаимная диффузия молекул элементов в кристаллические решетки друг друга и образование биметаллического материала. Этот метод называют плакированием.
виды, особенности, защита от коррозии
Атмосферная коррозия металлов – один из основных факторов риска при использовании металлоконструкций на открытом воздухе. Процесс начинается под действием внешних факторов и приводит к постепенному разрушению материала.
В этом материале мы расскажем о том, как формируется такой тип коррозии, в чем его опасность и какие средства используют для защиты металла.
Понятие и виды атмосферной коррозии
Появление ржавчины стимулируется микроклиматом, наблюдаемым в нижних слоях атмосферы. Материалы без дополнительной защиты постепенно начинают страдать от такой проблемы.
При этом, атмосферная коррозия не такая стремительная и губительная, как почвенная и морская. Это дает возможность использовать специальные средства для защиты от нее и продлевать длительность эксплуатаций изделий из металла.
Особенность атмосферной коррозии заключается в том, что у разных материалов и в зависимости от климата, ее протекание сильно отличается.
Есть 3 вида атмосферной коррозии:
Сухая атмосферная коррозия
В этом случае повреждение начинается и без воздействия влаги – на поверхности металла не появляется характерной деструктивной пленки из жидкости. Для протекания процесса, нужно чтобы влажность окружающей среды была меньше 60%.
По своей сути процесс – химический. Он слишком стремителен в силу образования окислительного слоя – он постепенно замедляет распространение ржавения внутрь. Аналогичный принцип используется и при пассивации металлов.
Если рассматривать течение процесса подробнее, его делят на два этапа:
- Быстрый. Начинается при соприкосновении необработанного материала с воздухом.
- Медленный. Постепенное протекание ржавения металла после того, как на нем появился слой окислов.
При этом ржавчина, пусть и медленно, но распространяется. Поверхность постепенно темнеет, а структура материала начинает разрушаться, теряет прочность.
Интенсивность протекания процесса будет зависеть от температуры окружающей среды. Если она высокая, скорость увеличится. Толщина пленки варьируется в зависимости от самого материала. Доказано, что дополнительным стимулятором развития процесса становится рассеивание в атмосфере агрессивных газов.
Влажная атмосферная коррозия
Такой тип коррозии стимулируется появлением слоя влаги на металле. Для России такой тип повреждений наиболее характерен. Если влажность воздуха превышает 60%, риск развития коррозийного поражения увеличивается.
Уйти от него невозможно – даже при утреннем выпадении росы влажность уже оказывается достаточной, чтобы покрыть деталь опасной пленкой.
Риск поражения также увеличивается из-за высокого уровня загрязненности воздуха, контакта с агрессивными химическими средами.
Конденсация влаги проходит по трем основным механизмам:
- Химический. Влага начинает накапливаться, потому что коррозийные продукты начинают контактировать с влажным воздухом. Это усугубляет процесс, потому ржавые участки сильнее задерживают воду.
- Капиллярная. Возникает в трещинах, зазорах и щелях.
- Абсорбционная. Связана с действием одноименных сил на стальной поверхности.
Часто в развитии процесса участвуют все три механизма, но на разных этапах его появления. Итог один – материал теряет прочность и постепенно начинает разрушаться.
Мокрая атмосферная коррозия
Быстрый и опасный тип атмосферной коррозии. Начинает появляться при стопроцентной влажности воздуха, когда на металле скапливаются капли воды.
Также процесс характерен и для тех конструкций, которые постоянно помещены в воду. Если вода загрязнена, имеет повышенную кислотность или концентрацию соли, риск только увеличивается.
Как факторы влияют на появление коррозии
Когда мы рассмотрели виды атмосферной коррозии, пришло время внимательнее оценить факторы ее возникновения и развития.
На изделие их может воздействовать сразу несколько, а при усугублении влияния скорость только растет.
Среди распространенных факторов:
Повышенная влажность воздуха
Как уже было описано выше, она создает пленку разной толщины, которая начинает разрушать материал.
Главный параметр – относительная атмосферная влажность. Она начинает значительно влиять на металл, когда уровень превышает 60%.
При стопроцентной влажности, развивается мокрая коррозия, затрагивающая практически все виды материалов.
В зависимости от сплава, критический уровень влажности может меняться. Так сталь, цинк, медь и никель начинают ржаветь при показателях выше 70%.
Техногенное загрязнение воздуха становится дополнительным фактором порчи при влажности.
Газовый состав атмосферы
Можно легко заметить, что при аналогичной влажности, уровне осадков и периодичности туманов, в разных регионах материалы ржавеют с отличной друг от друга скоростью. Причина заключается в составе атмосферы. Рассеянные в ней газы могут значительно ускорять процесс.
Наиболее опасная среди всех примесей – диоксид серы. Она дает стимулирование скорости процесса в десятки раз. Некоторые виды газов могут выступать как депассиваторы, а также отражаться на поверхности даже если она прошла обработку.
Именно по этой причине, если вы проводите установку металлоконструкции в промышленном районе с большим количеством опасных производств, нужно внимательно выбирать место. Особенно это актуально при использовании нестабильных металлов, таких, как цинк, кадмий или железо.
Также стоит отметить, что при высокой влажности этот негативный фактор только усугубляется.
Уровень содержания твердых частиц
Речь идет как про пассивные, так и про активные включения. Они влияют на электропроводность влаги, стимулируют ее накопление, выступают как депассиваторы.
К наиболее опасным соединениям относятся такие, как (Nh5)2SO4 и Na2SO4. Они могут быть рассеяны в воздухе в виде пыли и легко переносятся ветром. Именно по этой причине рядом с уже сильно проржавевшими металлическими изделиями коррозия начинает развиваться быстрее, чем в обычной обстановке.
Температура
Так как в нашей полосе наиболее распространена именно влажная или мокрая коррозия, температура играет важную роль в испарении воды. Когда столбик термометра опускается ниже, происходит медленное испарение воды, а значит, деталь ржавеет быстрее.
Также не стоит забывать и о географическом факторе. Он сочетает в себе все три описанных. В разных регионах отличается влажность, уровень осадков и другие факторы.
Кроме того, меняется состав атмосферы, наличие посторонних крупных включений и загрязнителей. Потому одинаковые по составу сплавы ржавеют с разной скоростью даже в разных районах одного города, не говоря уже о регионе.
Как протекает атмосферная коррозия?
Чтобы перейти к вопросу защиты от атмосферной коррозии, важно рассмотреть сам механизм ее протекания.
Представим металлическую заготовку и попробуем посмотреть на нее через микроскоп.
Так вы быстро увидите сформированную на поверхности тонкую пленку. Это электролит. В зависимости от того, в каких условиях хранился или использовался металл, электролит формируется из продуктов коррозии или атмосферной влаги.
При контакте с воздухом, на материале начинается развитие катодного процесса с параллельным замедлением анодного. Если атмосфера сильно загрязнена, состав электролита может меняться, на него начинают воздействовать агрессивные примеси газов и других частиц.
Когда критическая масса набирается, металл ржавеет. Процесс проникает все глубже внутрь. На финальных стадиях в листах появляются дыры, а металлические детали становятся хрупкими. Большинство механизмов защиты от действия атмосферы направлены на то, чтобы изначально не дать процессу случиться.
Как защититься от атмосферной коррозии
Защита от угрозы повреждения металла – это очень важное условие увеличения длительности эксплуатации изделий. Явление появления ржавчины хорошо изучено и для уменьшения риска используется несколько основных средств:
- Нанесение специальных покрытий. Они могут быть как металлическими, так и неметаллическими. При нанесении металлического используется цинк, никель и другие материалы. К неметаллической группе относятся многочисленные смазки, ЛКП, специальные пасты. Многие из них могут применяться не только для защиты, но и в качестве ингибиторов атмосферной коррозии на уже пораженных деталях. Так удается замедлить или блокировать распространение разрушения.
- Стабилизация уровня влажности воздуха. При условии, что воздух чистый, без сильной концентрации вредных примесей, опасных паров, уровень относительной влажности можно поддерживать на отметке в 50%. Это не устранит опасности развития сухой коррозии, но общий риск порчи значительно уменьшит.
- Использование ингибиторов. Так называются вещества, которые способны замедлить или заблокировать распространение коррозийного поражения. Обычно используются вещества летучего типа – от нитритов и бензоатов до карбонатов. Они могут применяться в различных видах – от пропитки до закачивания внутрь металлической емкости.
- Легирование. Обеспечивается на этапе выплавки стали. Такие вещества как медь, хром, никель, титан и некоторые другие помогают существенно уменьшить скорость анодной реакции. На выходе металлу также будет требоваться дополнительная защита, но и сам по себе он хорошо противостоит угрозе.
Мы знаем, как защитить материал от порчи
Так как распространение ржавчины нужно не допустить – она может полностью вывести из строя металлическое изделие, намного выгоднее изначально подумать о правильной защите. Мы справляемся с задачей методом цинкования. Он помогает создать на поверхности защитный слой, который не допускает контакта с воздухом и водой.
У нас три цеха горячего цинкования и самая глубокая ванна в Центральном федеральном округе. Это позволяет выполнять крупные заказы и работать с массивными изделиями.
Оставьте заявку на сайте или звоните нам, чтобы оформить заказ услуги или получить ответы на интересующие вас вопросы.
Вернуться к статьям
Поделиться статьей
Защита металла от коррозии, причины, способы защиты, таблица совместимости
Слово коррозия произошло от латинского corrodere. Оно в переводе означает «разъедать». Чаще всего встречается коррозия металла. Однако есть случаи, когда от коррозии страдают и изделия из других материалов. Ей подвержены и камни, и пластмасса и даже дерево. Сегодня все чаще люди сталкиваются с такой проблемой, как покрытие коррозией памятников архитектуры, сделанных из мрамора и других материалов. Из этого можно сделать, что под такой процесс, как коррозия обозначает разрушение под воздействием окружающей среды
Причины коррозии металлов
Коррозии подвержены большая часть металлов. Данный процесс представляет собой их окисление. Оно приводит к распаду их на оксиды. В простонародии коррозия получила название ржавчина. Она представляет собой порошок мелкого помола светло-коричневого оттенка. На многих видах металлов во время процесса окисления появляется специальный состав в виде скрепленной с ними оксидной пленки. Она обладает плотной структурой, благодаря чему кислороду из воздуха и воде не удается проникнуть в глубокие слои металлов для дальнейшего их разрушения.
Алюминий относится к разряду очень активных металлов. При соприкосновении с воздухом или водой он с теоретической точки зрения должен легко расщепляться. Однако во время коррозии на нем образуется специальная пленка, которая уплотняет его структуру и делает процесс образования ржавчины практически невозможным.
Таблица 1. Совместимость металлов
Металлы, в отношении которых представлены данные в таблице по подверженности их коррозии | Соотношение площади металла к другим металлам таблицы | Магний | Цинк | Алюминий | Кадмий | Свинец | Олово | Медь | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Магний | Низкое | С | С | С | С | С | С | ||||||
Высокое | У | У | У | С | С | ||||||||
Цинк | Низкое | У | У | У | С | С | С | ||||||
Высокое | Н | Н | Н | Н | Н | Н | |||||||
Алюминий | Низкое | У | Н | Н | С | С | |||||||
Высокое | Н | У | Н | С | С | С | |||||||
Кадмий | Низкое | Н | Н | Н | С | С | С | ||||||
Высокое | У | Н | Н | Н | Н | Н | |||||||
Углеродистая сталь | Низкое | Н | Н | Н | Н | С | С | С | |||||
Высокое | Н | Н | Н | Н | Н | Н | Н | ||||||
Низколегированная сталь | Низкое | Н | Н | Н | Н | С | С | С | |||||
Высокое | Н | Н | Н | Н | Н | Н | Н | ||||||
Литейная сталь | Низкое | Н | Н | Н | Н | С | С | С | |||||
Высокое | Н | Н | Н | Н | Н | Н | |||||||
Хромированная сталь | Низкое | Н | Н | Н | Н | У | У | С | |||||
Высокое | Н | Н | Н | Н | Н | Н | |||||||
Свинец | Низкое | Н | Н | Н | Н | Н | Н | ||||||
Высокое | Н | Н | Н | Н | Н | ||||||||
Олово | Низкое | Н | Н | Н | Н | Н | |||||||
Высокое | Н | Н | Н | Н | Н | ||||||||
Медь | Низкое | Н | Н | Н | Н | У | С | ||||||
Высокое | Н | Н | Н | Н | Н | У | |||||||
Нержавеющая сталь | Низкое | Н | Н | Н | Н | Н | Н | ||||||
Высокое | Н | Н | Н | Н | У | У | Н | ||||||
В 1 столбце таблицы представлены металлы, которые подвергаются или не подвергаются коррозии с металлами указанными в остальных столбцах таблицы и пропорция соотношения площадей металла, указанного в 1 столбце, к металлам в остальных столбцах таблицы. Краткое обозначение С, У, Н в таблице означает:
|
Таблица 2. Совместимость стали с металлами
Металлы, в отношении которых представлены данные в таблице по подверженности их коррозии | Соотношение площади металла к другим металлам таблицы | Углеродистая сталь | Низколегированная сталь | Литейная сталь | Хромированная сталь | Нержавеющая сталь | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Магний | Низкое | С | С | С | С | С | |||||||
Высокое | С | С | С | С | С | ||||||||
Цинк | Низкое | С | С | С | С | С | |||||||
Высокое | Н | Н | Н | Н | Н | ||||||||
Алюминий | Низкое | У | С | С | |||||||||
Высокое | Н | Н | У | У | У | ||||||||
Кадмий | Низкое | С | С | С | С | С | |||||||
Высокое | Н | Н | Н | Н | Н | ||||||||
Углеродистая сталь | Низкое | У | С | С | С | ||||||||
Высокое | Н | Н | Н | Н | |||||||||
Низколегированная сталь | Низкое | Н | Н | С | С | ||||||||
Высокое | Н | Н | Н | Н | |||||||||
Литейная сталь | Низкое | Н | У | С | С | ||||||||
Высокое | Н | Н | Н | ||||||||||
Хромированная сталь | Низкое | Н | Н | Н | С | ||||||||
Высокое | Н | Н | Н | Н | |||||||||
Свинец | Низкое | Н | Н | Н | Н | ||||||||
Высокое | Н | Н | У | Н | Н | ||||||||
Олово | Низкое | Н | Н | Н | |||||||||
Высокое | Н | Н | Н | У | |||||||||
Медь | Низкое | Н | Н | У | |||||||||
Высокое | Н | Н | Н | Н | |||||||||
Нержавеющая сталь | Низкое | Н | Н | ||||||||||
Высокое | Н | Н | Н | У | |||||||||
В 1 столбце таблицы представлены металлы, которые подвергаются или не подвергаются коррозии с металлами указанными в остальных столбцах таблицы и пропорция соотношения площадей металла, указанного в 1 столбце, к металлам в остальных столбцах таблицы.
Краткое обозначение С, У, Н в таблице означает:
|
Виды коррозии металлов
Сплошная коррозия
Наименее опасно для различных предметов из металлов является сплошная коррозия. Особенно она не опасна для тех ситуаций, когда повреждения аппаратов и оборудования не нарушают технические нормы их дальнейшего использования. Последствия такого вида коррозии можно с легкостью предугадать и скорректировать с учетом этого оборудование.
Местная коррозия
Большую опасность представляет собой местный вид коррозии. В этом случае потери металла не являются большими, но при этом образуются сквозные поражения металлов, что приводит к выходу из строя изделия или оборудования. Такой вид коррозии встречается в изделиях, которые соприкасаются с морской водой или солями. Такое появление ржавчины способствует тому, что поверхность металлической основы разъедается частично и конструкция теряет свою надежность.
Большое количество проблем появляется в местах, где используется хлорид натрия. Данное вещество применяется для устранения снега и льда на дорогах в городских условиях. Данный вид соли заставляет их превращаться в жидкость, которая уже в разбавленном с солями виде попадает в городские трубопроводы. В этом случае не помешает защита металлов от коррозии. Все подземные коммуникации при попадании воды с солями начинают разрушаться. В Соединенных Штатах Америки подсчитано, что в год на проведение ремонтных работ в области дорожных коммуникации уходит примерно два миллиарда долларов. Однако от данного вида соли для обработки дорожного полотна коммунальщики пока не готовы отказаться из-за низкой его стоимости.
Способы защиты металлов от коррозии
С самых давних времен люди старались защитить металлы от появления коррозии. постоянные атмосферные осадки приводили в негодность металлические изделия. Именно поэтому люди смазывали их различными жирными маслами. Затем они стали использовать для этой цели покрытия из других металлов, которые не ржавеют.
Современные химики тщательно прорабатывают все возможные методы борьбы с коррозией металлов. Они создают специальные растворы. Разрабатываются способы уменьшения рисков образования на металлах коррозии. Примером может служить такой материал, как нержавеющая сталь. Для ее производства использовалось железо, дополненное кобальтом, никелем, хромом и другими элементами. При помощи добавленных к нему элементов удалось создать металл, на котором более длительное время не образуется налет ржавчины.
Для защиты различных металлов от коррозии разработаны различные вещества, которые активно применяются в современной промышленности. Лаки и краски активно сегодня используются. Они являются наиболее доступными средствами для защиты от ржавчины изделий из металлов. Они создают преграду для попадания на сам металл воды или воздуха. Это позволяет на время отсрочить появление коррозии. Следует при нанесении краски или лака учитывать толщину слоя и поверхность материала. Для достижения наилучшего результата покрытие металлов от коррозии должно производиться ровным и плотным слоем.
Химическая коррозия металлов
По сущности коррозия может быть двух видов:
- химическая,
- электрохимическая.
Химическая коррозия представляет собой образование ржавчины при определенных условиях. В промышленных условиях не редко приходится сталкиваться с данным типом коррозии. Ведь на многочисленных современных предприятиях металлы перед созданием из них изделий нагреваются, что приводит к образованию такого процесса, как ускоренная химическая коррозия металла. При этом образуется окалина, которая является продуктом его реакции на появление ржавчины во время нагревания.
Ученые доказали, что современное железо гораздо больше подвержено образованию ржавчины. В нем содержится большое количество серы. Она появляется в металле из-за того, что во время добывания железных руд используется каменный уголь. Сера из него попадает в железо. Современные люди удивляются то, что древние предметы их этого металла, которые находят на раскопках археологи, сохраняют свои внешние качества. Это связано с тем, что в древности для добычи железа использовался древесный уголь, который практически не содержит серы, которая могла бы попасть в металл.
Такие металлы подвергаются коррозии
Среди металлов встречаются различные виды. Чаще всего для созданий каких-либо предметов или объектов применяется железо. Именно из него изготовляется в двадцать раз больше изделий и объектов, чем из других металлов вместе взятых. Данный металл стали использовать активнее всего в промышленности в конце 18 начале 19 веков. Именно в этот период был построен первый чугунный мост. Появилось первое морское судно, для изготовления которого была использована сталь.
В природе самородки железа встречаются в редких случаях. Многие люди считают, что данный металл не является земным, его относят к космическим или метеоритным. Именно он является наиболее подверженным к образования коррозии.
Также есть и другие металлы, подверженные коррозии. Среди них выделяются медь, серебро, бронза.
Видео «Коррозия металлов, способы защиты от неё»
Виды коррозии металлов и способы защиты
Коррозия – разрушение поверхности сталей и сплавов под воздействием различных физико-химических факторов – наносит огромный ущерб деталям и металлоконструкциям. Ежегодно этот невидимый враг «съедает» около 13 млн. т металла. Для сравнения – металлургическая промышленность стран Евросоюза в прошлом, 2014 году произвела всего на 0,5 млн. тонн больше. И это только – прямые потери. А длительная эксплуатация стальных изделий без их эффективной защиты от коррозии вообще невозможна.
Что такое коррозия и её разновидности
Основной причиной интенсивного окисления поверхности металлов (что и является основной причиной коррозии) являются:
- Повышенная влажность окружающей среды.
- Наличие блуждающих токов.
- Неблагоприятный состав атмосферы.
Соответственно этому различают химическую, трибохимическую и электрохимическую природу коррозии. Именно они в совокупности своего влияния и разрушают основную массу металла.
Химическая коррозия
Такой вид коррозии обусловлен активным окислением поверхности металла во влажной среде. Безусловным лидером тут является сталь (исключая нержавеющую). Железо, являясь основным компонентом стали, при взаимодействии с кислородом образует три вида окислов: FeO, Fe2O3 и Fe3O4. Основная неприятность заключается в том, что определённому диапазону внешних температур соответствует свой окисел, поэтому практическая защита стали от коррозии наблюдается только при температурах выше 10000С, когда толстая плёнка высокотемпературного оксида FeO сама начинает предохранять металл от последующего образования ржавчины. Это процесс называется воронением, и активно применяется в технике для защиты поверхности стальных изделий. Но это – частный случай, и таким способом активно защищать металл от коррозии в большинстве случаев невозможно.
Химическая коррозия активизируется при повышенных температурах. Склонность металлов к химическому окислению определяется значением их кислородного потенциала – способности к участию в окислительно-восстановительных реакциях. Сталь – ещё не самый худший вариант: интенсивнее её окисляются, в частности, свинец, кобальт, никель.
Электрохимическая коррозия
Эта разновидность коррозии более коварна: разрушение металла в данном случае происходит при совокупном влиянии воды и почвы на стальную поверхность (например, подземных трубопроводов). Влажный грунт, являясь слабощёлочной средой, способствует образованию и перемещению в почве блуждающих электрических токов. Они являются следствием ионизации частиц металла в кислородсодержащей среде, и инициирует перенос катионов металла с поверхности вовне. Борьба с такой коррозией усложняется труднодоступностью диагностирования состояния грунта в месте прокладки стальной коммуникации.
Электрохимическая коррозия возникает при окислении контактных устройств линий электропередач при увеличении зазоров между элементами электрической цепи. Помимо их разрушения, в данном случае резко увеличивается энергопотребление устройств.
Трибохимическая коррозия
Данному виду подвержены металлообрабатывающие инструменты, которые работают в режимах повышенных температур и давлений. Антикоррозионное покрытие резцов, пуансонов, фильер и пр. невозможно, поскольку от детали требуется высокая поверхностная твёрдость. Между тем, при скоростном резании, холодном прессовании и других энергоёмких процессах обработки металлов начинают происходить механохимические реакции, интенсивность которых возрастает с увеличением температуры на контактной поверхности «инструмент-заготовка». Образующаяся при этом окись железа Fe2O3 отличается повышенной твёрдостью, и поэтому начинает интенсивно разрушать поверхность инструмента.
Методы борьбы с коррозией
Выбор подходящего способа защиты поверхности от образования ржавчины определяется условиями, в которых работает данная деталь или конструкция. Наиболее эффективны следующие методы:
- Нанесение поверхностных атмосферостойких покрытий;
- Поверхностная металлизация;
- Легирование металла элементами, обладающими большей стойкостью к участию в окислительно-восстановительных реакциях;
- Изменение химического состава окружающей среды.
Механические поверхностные покрытия
Поверхностная защита металла может быть выполнена его окрашиванием либо нанесением поверхностных плёнок, по своему составу нейтральных к воздействию кислорода. В быту, а также при обработке сравнительно больших площадей (главным образом, подземных трубопроводов) применяется окраска. Среди наиболее стойких красок – эмали и краски, содержащие алюминий. В первом случае эффект достигается перекрытием доступа кислороду к стальной поверхности, а во втором – нанесением алюминия на поверхность, который, являясь химически инертным металлом, предохраняет сталь от коррозионного разрушения.
Положительными особенностями данного способа защиты являются лёгкость его реализации и сравнительно небольшие финансовые затраты, поскольку процесс достаточно просто механизируется. Вместе с тем долговечность такого способа защиты невелика, поскольку, не обладая большой степенью сродства с основным металлом, такие покрытия через некоторое время начинают механически разрушаться.
Химические поверхностные покрытия
Коррозионная защита в данном случае происходит вследствие образования на поверхности обрабатываемого металла химической плёнки, состоящей из компонентов, стойких к воздействию кислорода, давлений, температур и влажности. Например, углеродистые стали обрабатывают фосфатированием. Процесс может выполняться как в холодном, так и в горячем состоянии, и заключается в формировании на поверхности металла слоя из фосфатных солей марганца и цинка. Аналогом фосфатированию выступает оксалатирование – процесс обработки металла солями щавелевой кислоты. Применением именно таких технологий повышают стойкость металлов от трибохимической коррозии.
Недостатком данных методов является трудоёмкость и сложность их применения, требующая наличия специального оборудования. Кроме того, конечная поверхность изменяет свой цвет, что не всегда приемлемо по эстетическим соображениям.
Легирование и металлизация
В отличие от предыдущих способов, здесь конечным результатом является образование слоя металла, химически инертного к воздействию кислорода. К числу таких металлов относятся те, которые на линии кислородной активности находятся возможно дальше от водорода. По мере возрастания эффективности этот ряд выглядит так: хром→медь→цинк→серебро→алюминий→платина. Различие в технологиях получения таких антикоррозионных слоёв состоит в способе их нанесения. При металлизации на поверхность направляется ионизированный дуговой поток мелкодисперсного напыляемого металла, а легирование реализуется в процессе выплавки металла, как следствие протекания металлургических реакций между основным металлом и вводимыми легирующими добавками.
Изменение состава окружающей среды
В некоторых случаях существенного снижения коррозии удаётся добиться изменением состава атмосферы, в которой работает защищаемая металлоконструкция. Это может быть вакуумирование (для сравнительно небольших объектов), или работа в среде инертных газов (аргон, неон, ксенон). Данный метод весьма эффективен, однако требует дополнительного оборудования — защитных камер, костюмов для обслуживающего персонала и т.д. Используется он главным образом, в научно-исследовательских лабораториях и опытных производствах, где специально поддерживается необходимый микроклимат.
Кто нам мешает, тот нам поможет
В завершение укажем и на довольно необычный способ коррозионной защиты: с помощью самих окислов железа, точнее, одного из них — закиси-окиси Fe3O4. Данное вещество образуется при температурах 250…5000С и по своим механическим свойствам представляет собой высоковязкую технологическую смазку. Присутствуя на поверхности заготовки, Fe3O4 перекрывает доступ кислороду воздуха при полугорячей деформации металлов и сплавов, и тем самым блокирует процесс зарождения трибохимической коррозии. Это явление используется при скоростной высадке труднодеформируемых металлов и сплавов. Эффективность данного способа обусловлена тем, что при каждом технологическом цикле контактные поверхности обновляются, а потому стабильность процесса регулируется автоматически.
Коррозия – это разрушение металлических, керамических, деревянных и других материалов в результате химического или физико-химического взаимодействия. Что же касается причин возникновения такого нежелательного эффекта, то они разные. В большинстве случаев это конструкционная неустойчивость к термодинамическим воздействиям окружающей среды. Давайте подробно разберемся с тем, что такое коррозия. Виды коррозии тоже обязательно нужно рассмотреть, да и о защите от нее поговорить не будет лишним.
Немного общих сведений
Мы привыкли слышать термин «ржавление», который применяется в случае коррозии металла и сплавов. Есть еще такое понятие, как «старение», — оно свойственно полимерам. По сути, это одно и то же. Яркий пример – старение резиновых изделий из-за активного взаимодействия с кислородом. Помимо этого, некоторые пластиковые элементы разрушаются под воздействием атмосферных осадков. Скорость протекания коррозии напрямую зависит от условий, в которых находится объект. Так, ржавчина на металлическом изделии будет распространяться тем быстрее, чем выше температура. Также влияет и влажность: чем она выше, тем быстрее металл станет непригодным для дальнейшей эксплуатации. Опытным путем установлено, что примерно 10 процентов металлических изделий безвозвратно списываются, и виной всему – коррозия. Виды коррозии бывают различными и классифицируются в зависимости от типа сред, характера протекания и тому подобного. Давайте рассмотрим их более подробно.
Классификация
В настоящее время существует более двух десятков вариантов ржавления. Мы приведем только самые основные виды коррозии. Условно их можно поделить на следующие группы:
- Химическая коррозия – процесс взаимодействия с коррозионной средой, при котором окисление металла и восстановление окислителя проходят в одном акте. Металл и окислитель не разделены пространственно.
- Электрохимическая коррозия – процесс взаимодействия металла с раствором электролита. Ионизация атомов и восстановление окислителя проходят в разных актах, однако скорость во многом зависит от электродного потенциала.
- Газовая коррозия – химическое ржавление металла при минимальном содержании влаги (не более 0,1 процента) и/или высоких температурах в газовой среде. Чаще всего данный вид встречается в химической и нефтеперерабатывающей промышленности.
Электрохимическая коррозия и ее особенности
При таком виде разрушения процесс протекает при соприкосновении металла с электролитом. В качестве последнего может выступать конденсат или дождевая вода. Чем больше в жидкости содержится солей и кислот, тем выше электропроводность, а следовательно, и скорость протекания процесса. Что же касается наиболее подверженных коррозии мест металлической конструкции, то это заклепки, сварные соединения, места механических повреждений. В случае если конструкционные свойства сплава железа делают его устойчивым к ржавлению, процесс несколько замедляется, однако все равно продолжается. Ярким примером является оцинковка. Дело в том, что цинк имеет более отрицательный потенциал, нежели железо. По этой простой причине сплав железа восстанавливается, а цинк коррозирует. Однако наличие на поверхности оксидной пленки сильно замедляет процесс разрушения. Безусловно, все виды электрохимической коррозии являются крайне опасными и иногда с ними даже невозможно бороться.
Химическая коррозия
Такое изменение металла встречается довольно часто. Ярким примером является появление окалины в результате взаимодействия металлических изделий с кислородом. Высокая температура в этом случае выступает ускорителем процесса, а участвовать в нем могут такие жидкости, как вода, соли, кислоты, щелочи и растворы солей. Если говорить о таких материалах, как медь или цинк, то их окисление приводит к возникновению устойчивой к дальнейшей коррозии пленки. Стальные же изделия образуют окиси железа. Дальнейшие химические процессы приводят к возникновению ржавчины, которая не обеспечивает никакой защиты от дальнейшего разрушения, а наоборот, способствует этому. В настоящее время все виды химической коррозии устраняются при помощи оцинковки. Могут применяться и другие средства защиты.
Виды коррозии бетона
Изменение структуры и увеличение хрупкости бетона под воздействием окружающей среды может быть трех видов:
- Разрушение частей цементного камня – один из самых распространенных видов коррозии. Он имеет место в том случае, если изделие из бетона подвергается систематическому воздействию атмосферных осадков и других жидкостей. В результате вымывается гидрат окиси кальция и нарушается структура.
- Взаимодействие с кислотами. Если цементный камень будет контактировать с кислотами, то образуется бикарбонат кальция – агрессивный химический элемент для бетонного изделия.
- Кристаллизация труднорастворимых веществ. По сути, имеется в виду биокоррозия. Суть заключается в том, что микроорганизмы (споры, грибки) попадают в поры и там развиваются, вследствие чего происходит разрушение.
Коррозия: виды, способы защиты
Без сомнения, миллиардные ежегодные убытки привели к тому, что люди стали бороться с этим вредным воздействием. Можно с уверенностью говорить о том, что все виды коррозии приводят к потере не самого металла, а ценных металлоконструкций, на строительство которых тратятся огромные деньги. Сложно сказать, возможно ли обеспечить 100-процентную защиту. Тем не менее, при правильной подготовке поверхности, которая заключается в абразивоструйной очистке, можно добиться хороших результатов. От электрохимической коррозии надежно защищает лакокрасочное покрытие при правильном его нанесении. А от разрушения металла под землей надежно защитит специальная обработка поверхности.
Активные и пассивные методы борьбы
Суть активных методов заключается в том, чтобы изменить структуру двойного электрического поля. Для этого используют источник постоянного тока. Напряжение нужно выбирать таким образом, чтобы повышался электродный потенциал изделия, которое нужно защитить. Еще один крайне популярный метод — «жертвенный» анод. Он разрушается, защищая основной материал.
Пассивная защита подразумевает использование лакокрасочного покрытия. Основная задача заключается в том, чтобы полностью предотвратить попадание влаги, а также кислорода на защищаемую поверхность. Как уже было отмечено несколько выше, имеет смысл использовать цинковое, медное или никелевое напыление. Даже частично разрушенный слой будет защищать металл от ржавления. Конечно, данные виды защиты от коррозии металлов действенны только тогда, когда поверхность не будет иметь видимых дефектов в виде трещин, сколов и тому подобного.
Оцинкование в подробностях
Мы уже с вами рассмотрели основные виды коррозии, а сейчас хотелось бы поговорить о лучших методах защиты. Одним из таких является оцинкование. Суть его заключается в том, что на обрабатываемую поверхность наносится цинк или его сплав, что придает поверхности некоторые физико-химические свойства. Стоит отметить, что данный метод считается одним из самых экономичных и эффективных, и это при том, что на металлизацию цинком расходуется примерно 40 процентов от мировой добычи этого элемента. Оцинкованию могут подвергаться стальные листы, крепежные детали, а также приборы и другие металлоконструкции. Интересно то, что с помощью металлизации или распыления можно защитить изделие любого размера и формы. Декоративного назначения цинк не имеет, хотя с помощью некоторых специальных добавок появляется возможность получения блестящих поверхностей. В принципе, этот металл способен обеспечить максимальную защиту в агрессивных средах.
Заключение
Вот мы и рассказали вам о том, что такое коррозия. Виды коррозии тоже были рассмотрены. Теперь вы знаете, как защитить поверхность от преждевременного ржавления. По большому счету, сделать это предельно просто, но немалое значение имеет то, где и как эксплуатируется изделие. Если оно постоянно подвергается динамическим и вибрационным нагрузкам, то велика вероятность возникновения трещин в лакокрасочных покрытиях, через которые влага будет попадать на металл, в результате чего он будет постепенно разрушаться. Тем не менее, использование различных резиновых прокладок и герметиков в местах взаимодействия металлических изделий может несколько продлить срок службы покрытия.
Ну, вот и все по данной теме. Помните о том, что преждевременное разрушение конструкции из-за воздействия коррозии может привести к непредвиденным последствиям. На предприятии большой материальный ущерб и человеческие жертвы возможны в результате ржавления несущей металлоконструкции.
Коррозией металла называется его разрушение, вызванное электрохимическим воздействием внешней среды на его поверхность.
Разрушение металла труб почвенной коррозией происходит под действием малых электрических токов, возникающих на поверхности металла в результате взаимодействия с ним почвенного электролита. Поверхность металла и электролит образуют гальваническую пару. Та часть поверхности металла, из которой ток переходит в электролит, называется анодом, а та часть, где ток выходит из электролита, — катодом. В анодных зонах металл подвергается разрушению, а в катодных зонах происходит накопление продуктов коррозии без разрушения металла.
Подземная электрохимическая коррозия металла, в почвах и грунтах характерна для трубопроводов уложенных в землю, где грунтовые воды являются электролитами.
Коррозия блуждающими токами – электрохимическая коррозия металла под воздействием блуждающего тока, подвергаются трубы, уложенные в землю вблизи электрических кабелей и рельсов.
В зависимости от типа разрушений коррозии разделяются на сплошную, местную и структурную.
Сплошная коррозия охватывает всю поверхность металла.
Местная охватывающая отдельные участки с нарушением гладкой поверхности в виде царапин и др. она подразделяется на точечную и сквозную (кровли зданий).
Структурная – связанная со структурной неоднородностью металла, подразделяется на межкристаллитную, которая распространяется по границам зерен металла, и избирательную разрушающие структурные составляющие сплава. Так в серых чугунах разрушается металлическая основа, остается лишь скелет из включений графита.
Процесс разрушения труб под действием окружающей среды называется коррозией.
По характеру взаимодействия металла труб, различают два типа коррозии: химическую и электрохимическую.
Химической коррозией называется процесс разрушения всей поверхности металла при его контакте с агрессивным химическим веществом.
Электрохимической коррозией называется процесс разрушения металла сопровождающийся образованием и прохождением эл.тока при этом на поверхности металла образуется не сплошное, а местное повреждение металла в виде пятен и раковин.
Биокоррозия трубопроводов вызывается жизнедеятельностью микроорганизмов
Существует два способа защиты от коррозии: пассивный и активный.
Пассивный – изоляционные покрытия различными материалами ( битумно-резиновые и полимерные). Требования к покрытию:
прочность сцепления с металлом;
хорошая изоляция от эл.тока;
достаточная прочность и способность сопротивляться механическим воздействиям при засыпке траншеи.
К числу активным способам защиты относится катодная и протекторная защиты.
Сущность катодной защиты сводится к созданию отрицательного потеннцала на поверхности трубы. Благодаря чему предотвращается утечка электронов с поверхности трубы, сопровождающаяся ее коррозионным разъеданием.
Протекторная защита отличается тем, что необходимый для защиты ток, создается не станцией, а протекторами имеющие более отрицательный потенциал, чем защищаемый объект.
Основной металл защищается покрытием лакокрасочным, неметаллическим и металлическим, легированием электрохимическую (пластина цинка, магнитные протекторы. Основан на создании гальванических пар).
ЭЛЕКТРИЧЕСКИЕ МЕТОДЫ защиты – катодная, протекторная и дренажная.
При катодной – коррозия анодных участков трубы ликвидируется наложением на неё отрицательного потенциала, получаемого от внешнего источника постоянного тока, положительный потенциал которого соединяется с заземленным анодом. При такой схеме происходит разрушение заземленного анода (куска металла) и предотвращается разрушение трубы (катода).
При протекторной защите защитный ток возникает в результате работы гальванической пары протектор – труба, причем потенциал протектора должен быть ниже потенциала стали. Здесь не требуется источника электроэнергии, но расходуется значительное количество цветных металлов, поскольку протектор (анод) изготавливают из специальных сплавов – цинка, магния и алюминия.
Для повышения эффективности работы протектора его обычно обмазывают смесью глины с гибсовым порошком, что понижает сопротивление анодного заземлителя.
Дренажная защита предназначена для отвода блуждающих токов, в зоне прохождения поездов и трамваев, проходящих с газопровода обратно в рельсовую сеть.
Коррозия. Виды и способы защиты от коррозии
Коррозия материалов является одной из важных мировых проблем. Практика показывает, что только прямые безвозвратные потери металла от коррозии составляют 10…12% всей производимой стали, при этом суммарный ущерб в промышленных странах достигает 4-5% от национального дохода. Ведь корродирует не только черный металл ( сталь, чугун, железо и некоторые его сплавы ), но и бетон, дерево, камень, даже полимеры. Наиболее интенсивная коррозия наблюдается в зданиях и сооружениях химических производств, что объясняется действием различных газов, жидкостей и мелкодисперсных частиц непосредственно на строительные конструкции, оборудование и сооружения, а также проникновением этих агентов в грунты и действием их на фундаменты. Агрессивному воздействию подвержено до 75% строительного фонда. Коррозия металла приводит к ослаблению конструктива и, как следствие, снижению безопасности эксплуатации сооружений.
Коррозия — процесс разрушения материалов вследствие химических или электрохимических процессов. По характеру самого процесса коррозию разделяют на две основные группы : химическую и электрохимическую. Химическая коррозия протекает в не электролитах – жидкостях, не проводящих электрического тока и в сухих газах при высокой температуре. Электрохимическая коррозия происходит в электролитах и во влажных газах и характеризуется наличием двух параллельно идущих процессов: окислительного (растворение металлов) и восстановительного (выделение металла из раствора).
По внешнему виду коррозию различают: пятнами, язвами, точками, внутрикристаллитную, подповерхностную. По характеру коррозионной среды различают следующие основные виды коррозии: газовую, атмосферную, жидкостную и почвенную.
Газовая коррозия происходит при отсутствии конденсации влаги на поверхности. На практике такой вид коррозии встречается при эксплуатации металлов при повышенных температурах.
Атмосферная коррозия относится к наиболее распространенному виду электрохимической коррозии, так как большинство металлических конструкций эксплуатируются в атмосферных условиях. Коррозия, протекающая в условиях любого влажного газа, также может быть отнесена к атмосферной коррозии.
Жидкостная коррозия в зависимости от жидкой среды бывает кислотная, щелочная, солевая, морская и речная. По условиям воздействия жидкости на поверхность металла эти виды коррозии получают добавочные характеристики : с полным и переменным погружением, капельная, струйная. Кроме того, по характеру разрушения различают коррозию равномерную и неравномерную.
По степени воздействия на металлы коррозионные среды делятся на неагрессивные, слабоагрессивные, среднеагрессивные и сильноагрессивные.
Бетон и железобетон находят широкое применение в качестве конструкционного материала при строительстве зданий и сооружений химических производств. Но они не обладают достаточной химической стойкостью против действия кислых сред. Свойства бетона и его стойкость в первую очередь зависит от химического состава цемента из которого он изготовлен. Наибольшее применение в конструкциях и оборудовании находят бетоны на портландцементе. Причиной пониженной химической стойкости бетона к действию минеральных и органических кислот является наличие свободной гидроокиси кальция (до 20%), трехкальциевого алюмината (3CaO×Al2O3) и других гидратированных соединений кальция.
Коррозия бетона происходит тем интенсивнее, чем выше концентрация водных растворов кислот. При повышенных температурах агрессивной среды коррозия бетонов ускоряется. Несколько более высокой кислотостойкостью обладает бетон, изготовленный на глиноземистом цементе, из-за пониженного содержания оксида кальция. Кислотостойкость бетонов на цементах с повышенным содержанием оксида кальция в некоторой степени зависит от плотности бетона. При большей плотности бетона кислоты оказывают на него несколько меньшее воздействие из-за трудности проникновения агрессивной среды внутрь материала.
Щелочестойкость бетонов определяется главным образом химическим составом вяжущих, на которых они изготовлены, а также щелочестойкостью мелких и крупных заполнителей.
Увеличение срока службы строительных конструкций и оборудования достигается путем правильного выбора материала с учетом его стойкости к агрессивным средам, действующим в производственных условиях. Кроме того, необходимо принимать меры профилактического характера. К таким мерам относятся герметизация производственной аппаратуры и трубопроводов, хорошая вентиляция помещения, улавливание газообразных и пылевидных продуктов, выделяющихся в процессе производства; правильная эксплуатация различных сливных устройств, исключающая возможность проникновения в почву агрессивных веществ; применение гидроизолирующих устройств и др.
Непосредственная защита металлов от коррозии осуществляется нанесением на их поверхность неметаллических и металлических покрытий либо изменением химического состава металлов в поверхностных слоях: оксидированием, азотированием, фосфатированием.
Для защиты поверхностей от коррозии существуют разнообразные покрытия: лакокрасочные (антистатичные и армированные, полиуретановые, акриловые, порошковые эпоксидно – полиэфирные, органосиликатные и кремнийорганические), металлизационные с цинком, алюминием, медью и комбинациями этих металлов. Это краски, лаки, эмали, тонкодисперсные порошки, пленки. Лакокрасочные покрытия вследствие экономичности, удобства и простоты нанесения, хорошей стойкости к действию промышленных агрессивных газов нашли широкое применение для защиты металлических и железобетонных конструкций от коррозии. Защитные свойства лакокрасочного покрытия в значительной степени обуславливаются механическими и химическими свойствами, сцеплением пленки с защищаемой поверхностью.
Лакокрасочные материалы в зависимости от назначения и условий эксплуатации делятся на десять групп:
- А – покрытия стойкие на открытом воздухе;
- АН – то же, под навесом;
- П – то же, в помещении;
- Х – химически стойкие;
- Т – термостойкие;
- М – маслостойкие;
- В – водостойкие;
- ХК – кислотостойкие;
- ХЩ – щелочестойкие;
- Б – бензостойкие.
Наиболее распространены в промышленности покрытия металлические, неметаллические (органического и неорганического происхождения), а также покрытия, образованные в результате химической и электрохимической обработки металла.
Выбор вида покрытия зависит от условий, в которых используется защищаемое изделие (перепад температур, повышенная влажность, морская или пресная вода, щелочь, кислота, соли металлов, радиация, электроток и огонь), и технологичность возможностей формирования покрытия.
Наиболее часто применяемые способы защиты металлов:
- легирование;
- электрохимическая защита;
- покрытие металлами;
- защитные пленки.
Легирование – это введение в металл на стадии его производства определенного количества специальных добавок, например – хрома или марганца. Это придает сталям особые свойства, необходимые для использования в сложных условиях. Для возведения современных зданий, особенно повышенной этажности, необходима высококачественная атмосферостойкая легированная сталь, например, погодоустойчивая марка COR-TEN. Такой материал позволяет решить проблемы эксплуатации сооружений даже в экстремальных климатических условиях.
Одними из самых популярных и относительно недорогих мер защиты от коррозии сегодня являются методы, изменяющие химический состав металла в поверхностных слоях. Как правило, это электрохимические способы нанесения покрытий на металл. Наиболее известный процесс называется оцинковкой, которая в зависимости от способа обработки металла делится на горячую и холодную. В первом случае обрабатываемый материал погружается в специальную ванну. Затем под воздействием переменного тока осуществляется его обработка в растворе фосфата цинка при плотности тока 4 А/дм², напряжении 20 В и температуре 600-700ºС. В результате электрохимической реакции образуется ферроцинковый сплав. При применении второго способа на подготовленную поверхность стального листа наносится защитный слой из цинка. Оцинковка толщиной 0,3 мм позволяет обеспечить защиту обработанной поверхности металла более чем на 30 лет.
Итальянская фирма «Metalnastri» разработала метод, сочетающий в себе качество горячего и технологичность холодного цинкования. Это простая идея наклейки цинковой фольги на стальную поверхность. Высокую антикоррозийность создает сплошной цинковый слой, а токопроводящие клеевые композиции обеспечивают и электрохимическую защиту поверхности.
ЦНИИПСК им. А.П. Мельникова предложил метод термодиффузионного цинкования (ТДЦ) метизных и малогабаритных изделий из стали и чугуна. Метод заключается в нагреве металлоизделий в среде, содержащей порошок цинка. В результате на поверхности изделия образуется цинковое покрытие с хорошими защитными и декоративными свойствами. Технологический процесс такого цинкования экологически чист и практически безотходен. В качестве сырья используются отечественные материалы, не требующие специальной обработки. ТДЦпокрытие обладает высокой адгезией и износостойкостью, обеспечиваемой в результате взаимной диффузии железа и цинка. Срок службы покрытия в 1,5-4 раза больше по сравнению с традиционными цинковыми покрытия.
Широкое распространение цинковых покрытий обусловлено их хорошими химическими свойствами. Для стали (катод) цинк является анодом, за счет этого образуется гальваническая пара, имеющая высокие защитные свойства, хорошо сохраняемые даже при малой толщине слоя. Скорость разрушения цинкового покрытия составляет примерно 1-10 мкм в год в зависимости от различных факторов. Оцинковка может осуществляться совместно с другими металлами – с добавлением алюминия (Al) или железа (Fe). В настоящее время в России широко используется сталь Galfan c цинкоалюминиевым покрытием и сталь Galvannealed с цинкожелезным покрытием.
При покрытии другими металлами в зависимости от вида коррозии покрывающий слой наносят различными способами. В качестве покрывающего материала часто используется хром или никель. Хромирование – электролитическое нанесение покрытия из хрома на поверхность металлического изделия. Никелирование, также нанесение на поверхность изделий никеля толщиной от 2 до 50 мкм.
На практике обычно применяются следующие методы:
- Погружение изделий в расплавленный металл (горячий способ). Заключается в том, что изделия погружают в ванну с расплавленным металлом или же нагретую поверхность деталей обволакивают расплавленным металлом.
- Метод термической диффузии. Основан на диффузии (проникновении) в поверхностные слои деталей присадок при высокой температуре. Диффузионные покрытия наносятся при нагреве деталей в твердой (порошкообразной), жидкой или газообразной фазе металла.
- Металлизация. Заключается в нанесении (распылении) на поверхность деталей слоя присадок расплавленного металла с помощью пульверизаторов.
- Контактный метод осаждения металла. Осуществляется без применения внешнего источника тока за счет вытеснения менее благородными металлами более благородных из растворов их солей. Толщина таких покрытий невелика и защитные свойства их невысоки.
Следует отметить, что металлические покрытия достаточно хорошо защищают металл от коррозии. Однако при нарушении защитного слоя она может протекать даже более интенсивно, чем без покрытия. Поэтому в промышленности для улучшения свойств металлических поверхностей, обработанных электротехническим методом, используется способ нанесения защитных покрытий из полимерных материалов. Такие продукты получили широкое распространение в строительной индустрии. Использование полимерных материалов для антикоррозионной защиты обусловлено их уникальными физико-химическими показателями. Полимеры имеют небольшой удельный вес, высокую стойкость к не механическим воздействиям (соприкосновение с водой, солями, щелочами или кислотами). Обладают пластичностью и светостойкостью. В настоящее время наибольшее распространение получили « трехслойные» продукты с двойным уровнем защиты. Первый уровень – непосредственно оцинковка, второй – полимер. Благодаря такой структуре сталь становится стойкой к воздействию агрессивных сред, механическим повреждениям и ультрафиолетовому изучению. Срок их службы составляет порядка 50 лет, в зависимости от качества и толщины покрытия. Необходимо также учесть, что высокие эксплуатационные характеристики таких материалов напрямую зависят от качества оцинковки исходного металла, а потребительские качества – от применяемого в составе полимера.
Альтернативой полимерным материалам являются конструкционные пластмассы и стеклопластики, получаемые на основе различных синтетических смол и стекловолокнистых наполнителей. В настоящее время выпускается значительный ассортимент материалов, особое место среди них занимает полиэтилен. Он инертен во многих кислотах, щелочах и растворителях, а также имеет высокую теплостойкость.
Другим направлением использования полиэтилена в качестве химически стойкого материала является порошковое напыление. Применение полиэтиленовых покрытий объясняется их дешевизной и хорошими защитными свойствами. Покрытия легко наносятся на поверхность различными способами, в том числе пневматическим и электростатическим распылением.
Защитные пленки. Способ заключается в нанесении на металл защитной оболочки из различных компонентов в следующей последовательности: шпатлевка, грунтовка, краска, лак или эмаль.
Для противокоррозионной защиты конструкций зданий и сооружений (ферм, ригелей, балок, колонн, стеновых панелей), а также наружных и внутренних поверхностей емкостного технологического оборудования, трубопроводов, газоводов, воздуховодов вентиляционных систем, которые в процессе эксплуатации не подвергаются механическим воздействиям абразивных частиц, применяют лакокрасочные покрытия. Такие покрытия наиболее эффективны для защиты от атмосферной коррозии. Однако срок службы лакокрасочных покрытий невелик и составляет 4-5 лет. Для повышения коррозионной стойкости лакокрасочных покрытий используют различные противокоррозионные пигменты.
Следует назвать антикоррозионные пигменты фирмы SNCZ (Франция): фосфаты цинка; модифицированные фосфаты цинка; фосфаты, не содержащие цинк; полифосфаты; феррит кальция, а также тетраоксихромат цинка; хроматы стронция, цинка, бария.
Наиболее часто используются фосфаты цинка PZ 20 и PZ W2 в большинстве лакокрасочных систем: органоразбавляемых, водоразбавляемых, воздушной и горячей сушки.
Там, где нельзя использовать противокоррозионные пигменты, содержащие цинк (контакт с пищевыми продуктами), используются пигменты на основе щелочеземельных фосфатов Новинокс РАТ 30, Новинокс РАТ 15 и Новинокс РС01.
Металлоконструкции, подвергающиеся воздействию соляного тумана, могут быть защищены лакокрасочными материалами, содержащими фосфат щелочеземельных металлов. Фосфат щелочеземельных металлов – нетоксичный пигмент, что повышает экологичность лакокрасочного покрытия и увеличивает сферу его применения.
Тетраоксихромат цинка ТС 20, хромат стронция L203E и хромат цинка CZ20 – применяются в лакокрасочных материалах, использующихся в авиационных, судовых покрытиях, а также в составе адгезивов для легких сплавов.
Для защитных покрытий, эксплуатирующихся в условиях высоких температур (до 600ºС), используются хромат бария М 20 и феррит кальция FC 71. Применение феррита кальция для защитных покрытий – новое направление в лакокрасочных материалах. В табл. 1 представлена стойкость различных лакокрасочных материалов (ЛКМ) к агрессивным средам.
Таблица 1. Стойкость лакокрасочных материалов
ЛКМ, по типу связующего | Стойкость к агрессивным средам | |||||||
Вода | Водяной пар | Растворители | Разбавленные растворители | Кислоты | Разбавленные кислоты | Щелочи | Разбавленные щелочи | |
Винилхлоридные | + | ++ | ± | ± | ± | + | ± | + |
Хлоркаучуковые | + | ++ | ± | ± | ± | + | ± | + |
Акриловые | ± | ++ | ± | ± | ± | + | ± | + |
Алкидные | ± | + | ± | + | ± | ± | ± | ± |
Битумные | ++ | ++ | ± | ± | ± | ± | ± | + |
ПУ ароматические | ± | ++ | + | ++ | + | + | ± | ± |
ПУ алифатические | + | ++ | ± | + | ± | + | ± | ++ |
Эпоксиднополиуретановые | ++ | ++ | ± | ± | ± | + | + | ++ |
Эпоксидные | ++ | ++ | + | ++ | ± | + | ++ | ++ |
Цинк-силикатные | + | ++ | ++ | ++ | + | + | + | + |
Перхлорвиниловые | ++ | ++ | ± | ± | ± | ± | ± | + |
Примечания: ++ отлично, + хорошо, ± удовлетворитльно
Наиболее распространенным способом защиты от коррозии строительных конструкций, сооружений и оборудования является использование неметаллических химически стойких материалов: кислотоупорной керамики, жидких резиновых смесей, листовых и пленочных полимерных материалов (винипласта, поливинилхлорида, полиэтилена, резины), лакокрасочных материалов, синтетических смол и др. Для правильного использования неметаллических химически стойких материалов необходимо знать не только их химическую стойкость, но и физико-химические свойства, обеспечивающие условия совместной работы покрытия и защищаемой поверхности. При использовании комбинированных защитных покрытий, состоящих из органического подслоя и футеровочного покрытия, важным является обеспечение на подслое температуры, не превышающей максимальной для данного вида подслоя.
Для листовых и пленочных полимерных материалов необходимо знать величину их адгезии с защищаемой поверхностью. Ряд неметаллических химически стойких материалов, широко используемых в противокоррозионной технике, содержит в своем составе агрессивные соединения, которые при непосредственном контакте с поверхностью металла или бетона могут вызвать образование побочных продуктов коррозии, что, в свою очередь, снизит величину их адгезии с защищаемой поверхностью. Эти особенности необходимо учитывать при использовании того или иного материала для создания надежного противокоррозионного покрытия.
Просмотров:
6 778
Понимание коррозии и способы защиты от нее
Ежегодно корродированные машины, здания и оборудование обходятся американской промышленности примерно в 7 миллиардов долларов. Коррозия — дорогостоящая проблема. Но, понимая его коренные причины, можно предпринять эффективные шаги для предотвращения и борьбы с ним.
Существует несколько видов затрат на коррозию, которые необходимо учитывать рабочим завода:
• Прямая потеря или повреждение металлических конструкций из-за коррозии. Примером может служить резервуар для горячей воды, который подвергся коррозии и должен быть утилизирован.
• Затраты на техническое обслуживание, связанные с коррозией. Любая металлическая поверхность, которую необходимо красить каждые несколько лет для предотвращения коррозии, попадает в эту область.
• Косвенные потери в результате коррозии. Эти потери могут возникнуть в результате утечки и пожара. Взрывы, связанные с утечками, отключениями электроэнергии, остановкой оборудования и потерями рабочей силы, также косвенно являются результатом коррозии.
Первый шаг к контролю этих затрат требует понимания того, что такое коррозия и что ее вызывает.
Что такое ржавчина?
При коррозии железа или стали образуется оксид железа, или то, что мы называем ржавчиной. Сталь в основном состоит из железной руды. В естественном состоянии железная руда очень похожа на ржавчину: темно-красная, мелкозернистая, со способностью удерживать влагу.
Железная руда является стабильным веществом до тех пор, пока не превратится в железо или сталь, естественно более слабые элементы. Когда сталь подвергается воздействию влаги и кислорода, она сразу же начинает возвращаться в свое естественное состояние. Несмотря на то, что были приняты защитные меры, большая часть стали, произведенной в этом столетии, уже превратилась в оксид в своем естественном состоянии.
Для существования коррозии необходимы три элемента: защищенный металл, корродированный металл и токопроводящая среда между ними. Когда два разнородных металла соприкасаются, один становится защищаемым металлом, а другой — корродированным. Операторы установки могут распознать экологические ситуации, способствующие коррозии.
Например:
• Если на стальных трубах используются оцинкованные фитинги, оцинкованные (цинковые) фитинги подвергаются коррозии, а сталь остается защищенной.
• Сталь или другие металлы, находящиеся под напряжением, подвергаются коррозии, в то время как ненапряженная сталь защищена от коррозии. Это причина того, что на стали появляются язвы ржавчины.
• Свежесрезанная сталь быстрее подвергается коррозии. Резьба, нарезанная на трубе, всегда сначала ржавеет.
Даже если кусок стали не соприкасается с другим металлом, не находится под напряжением и не только что разрезан, он будет ржаветь под воздействием погодных условий. Это связано с тем, что сталь не совсем однородна по составу — небольшие изменения плотности и состава будут происходить внутри одного куска стали, что приводит к коррозии.
Третий ингредиент, необходимый для коррозии стали, — это электролит. Обычно это жидкое или водосодержащее вещество, которое проводит ток коррозии от защищаемого металла к корродированному металлу. Самым распространенным токопроводящим веществом является вода. Дождь, роса, влажность в воздухе и т. Д. Служат эффективными проводниками электричества. Сталь очень медленно подвергается коррозии в пустынном климате, где влажность низкая, а дожди редки. В местах с высокой влажностью и частым дождем защита стали имеет решающее значение.Операторы установки узнают некоторые из следующих сред, в которых используются электрические токи для ускорения процесса коррозии:
• Добавление соли в воду значительно увеличивает ее токопроводящую способность. Таким образом, сталь, подвергающаяся воздействию морской воды или солевого тумана, будет корродировать быстрее, чем сталь в пресной воде. Атмосферная коррозия сильнее в районах около океанов из-за воздействия соленого воздуха. Концентрированные солевые растворы, например, используемые в пищевой промышленности, вызывают сильную коррозию.
• Промышленный дым и пары содержат кислоты, щелочи и другие химические вещества, которые служат проводниками тока. Следовательно, атмосферная коррозия в промышленных районах более серьезна, чем в сельской местности.
• Почва, глина и земляные материалы также являются хорошими проводниками электричества. Трубопроводы и другая сталь, закопанная в землю, будут подвержены коррозии, если не будут защищены. Подобно тому, как почва значительно различается по составу, она также различается по своей электропроводности: одни почвы вызывают более сильную коррозию, чем другие.
Контроль коррозии
Чтобы сделать использование стали и других металлов практичным в строительстве и производстве, необходимо применять некоторые методы защиты от коррозии. В противном случае срок службы стали и других металлов будет ограничен, что снизит эффективность и увеличит стоимость обслуживания. Есть несколько эффективных способов остановить коррозию:
1. Подаваемый ток. Используя подходящее генерирующее ток оборудование и средства управления, можно воспроизвести ток, равный по силе корродирующему току, но текущий в противоположном направлении.Этот тип защиты обычно ограничивается трубопроводами, заглубленными резервуарами и т. Д. И требует тщательного проектирования и компоновки. При неправильном использовании приложенный ток может вызвать коррозию.
2. Жертвенные металлы. Сталь может быть защищена путем размещения рядом с другим металлом. Например, если цинк или магний находятся в непосредственном контакте со сталью, они защищают сталь от коррозии. Здесь цинк и магний служат жертвенными металлами, которые не только защищают область непосредственного контакта, но и защищают за пределами металла во всех направлениях.Защита от ржавчины с помощью жертвенных металлов обычно используется в нескольких формах:
• Цинковые или магниевые блоки часто используются для защиты корпусов судов, внутренних поверхностей резервуаров для воды и других погруженных поверхностей.
• Часто выполняется полное покрытие стали жертвенным металлом. Например, оцинкованная сталь — это сталь, покрытая цинком. Цинк жертвенный и защитит стальную основу.
• Покрытия с высоким содержанием цинка могут наноситься на стальную поверхность для обеспечения катодной защиты.Покрытия с высоким содержанием цинка содержат от 85% до 95% металлического цинка в подходящем связующем. Частицы цинка, нанесенные при окраске, защищают сталь.
3. Грунтовки. Грунтовки и готовые покрытия защищают металлические поверхности, создавая барьер между сталью и корродирующими элементами. Они также предотвращают попадание влаги на поверхность стали. Пленка покрытия защищает нижележащие металлические подложки тремя способами:
• Покрытия могут замедлять скорость диффузии воды и кислорода из окружающей среды к металлической поверхности.Это замедляет процесс коррозии.
• Пленка краски может замедлить скорость диффузии продуктов коррозии с металлической поверхности через пленку краски. Это также замедляет процесс коррозии.
• Антикоррозионные пигменты, содержащиеся в качественных грунтовках, изменяют поверхностные свойства основного металла. В результате металл приобретает высокое электрическое сопротивление. Разные пигменты по-разному осуществляют эту реакцию. Грунтовки поглощают и связывают влагу, поэтому она не вступает в реакцию со сталью.
Как выбрать антикоррозийное покрытие
Рассмотрение следующих критериев может выявить наиболее эффективный тип антикоррозионного покрытия, необходимый для конкретного проекта.
Качество покрытия / нанесения — Какой уровень антикоррозийной краски требуется? Насколько важно, чтобы краска была стойкой к выцветанию и / или истиранию? Как часто вы планируете перекрашивать? Есть ли предпочтения по нанесению: кисть / валик или распылитель?
Эстетика — Какие материалы будут покрыты? Насколько важно, чтобы лакокрасочный слой выглядел привлекательно? Важно ли сохранять цвет?
Цена — Обычно более качественная краска увеличивает цену.Учитываются ли заявки на подкрашивание при оценке затрат на техническое обслуживание? Какова стоимость выбранной краски? Как часто нужно будет перекрашивать?
Экологические нормы — Каковы местные экологические нормы для красок и покрытий? Соответствует ли краска этим стандартам? Как процесс покраски повлияет на близлежащее окружение? С июня 2002 года правительство США примет постановление о снижении количества загрязняющих веществ в краске для повышения защиты окружающей среды.Новые пределы содержания летучих органических соединений (ЛОС) упадут до 450 г / л краски. Более жесткие ограничения будут введены в Калифорнии, Аризоне, Нью-Йорке и Нью-Джерси, сведя к минимуму твердые объемы до уровня всего 340 г / л.
Покрытия
При ремонтной окраске используются три основных типа покрытий. Исходя из требований к качеству, цене, применению и эстетике, операторы установки могут выбрать подходящее покрытие из следующего:
• Алкидные эмали — Алкидные эмали предназначены для внутренних и наружных поверхностей в умеренных и тяжелых условиях.Это покрытие обеспечивает надежную коррозионную стойкость на срок до 3-5 лет. Алкидные эмали обеспечивают глянцевый цвет, устойчивы к выцветанию и могут наноситься валиком или распылителем. • Эпоксидные покрытия — Эпоксидные покрытия используются для внутренних и наружных поверхностей в промышленных условиях, где сохранение цвета и блеск не важны. Качество покрытия будет лучше, чем у алкидной эмали, поскольку она выдерживает суровые промышленные условия. Эпоксидные покрытия лучше всего наносить распылением, но также можно использовать кисти и валики.
• Полиуретановые покрытия — Полиуретановое покрытие является краской наилучшего качества из всех трех вариантов. Он выдерживает самые суровые условия окружающей среды и может прослужить до 10 лет. Он обеспечивает сильное сохранение цвета и блеска и устойчив к истиранию. Полиуретановые покрытия наносятся распылением.
Заключение
Краски работают, потому что они замедляют коррозию за счет уменьшения скорости протекания тока в процессе электрохимической коррозии. Понимая, что такое коррозия, операторы установок могут предсказать, где может возникнуть ржавчина, и распознать факторы окружающей среды на своем предприятии, которые способствуют коррозии.Хорошая новость заключается в том, что, хотя коррозия может быть дорогостоящей, это не обязательно. Краски — это экономичное средство защиты от коррозии. Регулярное техническое обслуживание операторами установки может минимизировать появление и последствия коррозии.
Предотвращение коррозии и методы защиты конструкционной стали
Предотвращение коррозии конструкционной стали имеет важное значение для общей целостности и эстетики конструкции. Независимо от того, поддерживает ли конструкционная сталь мост, коммерческое здание или завод, владельцы активов должны иметь возможность рассчитывать на инфраструктуру в долгосрочной перспективе.Коррозия представляет опасность для этой инфраструктуры.
Владельцы активов и их инженер по коррозии или руководитель проекта должны оценить наилучшие способы реализации защиты от коррозии для стали, поддерживающей актив. Здесь мы объясним роль рабочей среды в защите от коррозии, а затем опишем методы проектирования и системы покрытий, которые обеспечат защиту конструкционной стали от коррозии на десятилетия вперед.
Понимание подверженности конструкционной стали
Перед созданием системы защиты от коррозии для конструкционной стали владельцы активов должны понимать, насколько коррозионно стойкой будет сталь.Например, мост из соленой воды, подверженный воздействию застойной влаги и электролитов, подвержен более высокому риску коррозии, чем внутренняя структурная балка в коммерческом здании. Оба требуют защиты от коррозии, но на разных уровнях.
Владельцы
активов хотят максимально возможной защиты, но перебор с интенсивной системой защиты от коррозии, когда требуется только умеренная защита от коррозии, потребует дополнительных денег и времени, которые можно было бы потратить на что-то другое. Оцените риск коррозии, с которым столкнется актив (используя такой ресурс, как Экологические зоны SSPC), и защитите его на этом уровне, но не выше.
Выбор стали и рекомендации по проектированию для предотвращения коррозии
Перед тем, как команда по нанесению покрытий нанесет один компонент, владельцы активов могут внедрить методы предотвращения коррозии с осознанным выбором стали и конструкции. Сами по себе покрытия неэффективны для защиты конструкционной стали от всех форм коррозии. Например, покрытия эффективны в борьбе с равномерной коррозией, но менее эффективны в борьбе с локальными атаками, такими как точечная коррозия. Воспользуйтесь следующими советами по выбору стали и конструктивным соображениям, чтобы успешно настроить систему покрытия.
Выбор стали
Качество самой стали может иметь значение для защиты от коррозии. Высоколегированная сталь, естественно, более устойчива к коррозии, чем низколегированная (хотя на нее все равно должны быть нанесены защитные покрытия), и она более дорогая. Если владельцы активов выберут более доступную по цене низколегированную сталь, вероятно, потребуется более комплексная система покрытия для эффективного предотвращения коррозии.
Контроль коррозии — это лишь часть процесса выбора стали.Владельцы активов должны уравновесить эти потребности с конечным использованием стального элемента, его первоначальной стоимостью и будущими затратами на техническое обслуживание.
Соображения по конструкции
Конструкция из конструкционной стали также может предотвратить коррозию. Эти конструктивные факторы не влияют на покрытие или повторное покрытие уже построенной конструкции, но их важно знать, поскольку их несоблюдение ведет к повышенному риску коррозии.
Для новой структуры помните об этих конструктивных соображениях на ранних этапах процесса.
- Уменьшите воздействие атмосферы. Любые области, где воздействие атмосферы может быть ограничено (особенно, когда окружающая среда особенно агрессивна), будут способствовать общей системе предотвращения коррозии.
- Держитесь подальше от разнородных металлов. Гальваническая коррозия (один из многих типов коррозии) возможна, когда в конструкционной стальной системе используются два или более разнородных металла. Помните о выборе металла, чтобы предотвратить этот тип коррозии.
- Не допускать скопления воды. Водоотделители изначально подвержены коррозии, поскольку влага ускоряет коррозию. Они еще более проблематичны, если в окружающей среде есть грязь и мусор, потому что, когда они попадают в ловушку, они, как правило, удерживают влагу. Убедитесь, что места не вызывают ненужного скопления воды или застоя воды.
- Избегайте неровностей поверхности. К ним относятся щели, острые края и недоступные области, которые трудно покрывать и осматривать, а также они подвержены высокому риску коррозии.Не всех неровностей можно избежать. Те, что остались, обратите на них особое внимание при нанесении покрытия.
Защитные покрытия для защиты от коррозии
Покрытия — первая линия защиты — играют важную роль в защите конструкционной стали от коррозии. Здесь мы расскажем о стандартах подготовки поверхности, системах покрытий и методах нанесения эффективных систем защиты от коррозии.
Стандарты подготовки поверхности для конструкционной стали
Предпочтительными стандартами подготовки поверхности для конструкционной стали являются струйная очистка белого металла SP 5 или струйная очистка почти белого металла SP 10.Очистка ручным инструментом или струйная очистка всегда возможны, но для достижения желаемой производительности системы необходимо соблюдать строгие стандарты для этого типа подготовки поверхности.
Варианты покрытия для различных уровней воздействия окружающей среды
Оптимальная система покрытия зависит от коррозионной активности окружающей среды. Вот наиболее подходящие варианты для каждого типа среды.
Высококоррозионные среды
Для сред с высокой влажностью, химической атмосферой или воздействием соленой воды наиболее распространенным выбором является система цинк-эпокси-уретан.Цинк обеспечивает катодную защиту стали и жертвует собой перед подложкой. Грунтовки с неорганическим цинком обеспечивают лучшую катодную защиту, чем грунтовки с органическим цинком, но органические грунтовки наносятся легче. Затем цинковую грунтовку покрывают эпоксидным промежуточным слоем, а затем уретановым верхним слоем для сохранения цвета и блеска.
Полисилоксан — это двухкомпонентное покрытие на основе смолы, также подходящее для высококоррозионных сред. Этот вариант более дорогой, но его часто используют, потому что он экономит время и труд при устранении шерсти.Он также предлагает лучшие цветовые и глянцевые характеристики по сравнению с уретанами и соответствует нормам выбросов в жестких условиях окружающей среды.
Среда с умеренной коррозией
Широкий спектр систем эпоксидных покрытий хорошо работает в условиях эксплуатации с умеренным риском коррозии. Система покрытия по-прежнему обеспечивает защиту от коррозии (только не так хорошо, как система с покрытием с высоким содержанием цинка) и ее легко наносить. Эпоксидные смолы также устойчивы к поверхности, что означает, что их можно наносить на плотно прилегающую ржавую поверхность, которую невозможно обработать струйной очисткой до голой стали (что делает их жизнеспособным выбором для повторного нанесения покрытия).
Слабоагрессивные среды
Для внутренних или контролируемых сред с минимальным или нулевым воздействием химикатов или влаги, однокомпонентные акриловые краски на водной основе являются подходящим выбором. Они не имеют запаха, с ними легко работать, и для их очистки требуется только мыло и вода. В минимально агрессивных средах эта система покрытия будет работать хорошо (по сравнению с более обширной системой покрытия, которая переборщила).
Резервная грунтовка на масляной основе с финишным покрытием на масляной основе доступна в качестве опции.Но эта система покрытия высыхает медленнее, а это означает, что время и летучие органические соединения вызывают беспокойство, и в будущем могут возникнуть проблемы с обслуживанием в зависимости от воздействия.
Роль методов нанесения
Методы нанесения — обычно кистью, валиком или распылением — также должны быть в центре внимания при выборе системы покрытия. Некоторые покрытия лучше работают при распылении, но ограничения окружающей среды могут не допускать распыление в полевых условиях (для предотвращения чрезмерного распыления). Освоение ограничений по применению подложки не позволит владельцам активов выбрать наиболее подходящую систему покрытия только для того, чтобы обнаружить, что ее нельзя наносить предполагаемым методом.
Сбалансированная система защиты от коррозии
Предотвращение коррозии для конструкционной стали — это не просто отметка в одном квадрате — это целая система, которая будет защищать основу на многие годы. В хорошей системе сочетаются условия эксплуатации, дизайн и системы покрытия, чтобы получить желаемую производительность и срок службы с наименьшими затратами.
Чтобы получить лучший отраслевой совет по методам предотвращения коррозии и защиты конструкционной стали, подумайте о приобретении Стандартов и передовых методов подготовки поверхности стальных оснований.Защита конструкционной стали важна для поддержания целостности объекта, и этот ресурс SSPC поделится ценными отраслевыми знаниями для следующего проекта по нанесению покрытий.
Лучший способ защитить сталь от коррозии
Коррозия возникает, когда металл подвергается воздействию природных электролитов, таких как соль, кислород и вода. Это воздействие приводит к образованию оксидов на поверхности металлической детали, что вызывает коррозию. (Оксиды иногда соединяются с сульфидами и карбонатами.)
Весь естественный процесс коррозии возвращает металл в его первоначальное состояние руды, делая его более слабым и более восприимчивым к повреждениям от природных элементов и чрезмерному использованию.
Большинство металлов обладают врожденной способностью к коррозии, особенно нержавеющая и углеродистая сталь. Поскольку большинство коммерческих зданий построено из стали и существует пять распространенных методов коррозии, важно, чтобы ваше здание было постоянно защищено.
Вот как защитить сталь от коррозии, по мнению экспертов по окраске и настенным покрытиям из Cochran & Mann во Фредерике, штат Мэриленд:
Цинковое покрытие
Цинк — это природный химический элемент с врожденной устойчивостью к коррозии, что делает его пригодным для всех стальных изделий.По данным Американской ассоциации гальванизаторов (AGA), он образует «плотные, прилипшие побочные продукты коррозии» и действует как барьер между железной или стальной деталью и окружающей средой.
Самыми популярными методами цинкования являются методы изготовления листового металла, включая периодическое или непрерывное горячее цинкование листа, механическое или цинкование, а также гальваническое цинкование. Однако методы окраски, такие как окрашивание с высоким содержанием цинка (часто ошибочно принимаемое за холодное цинкование) и металлизация / напыление цинка, также обеспечивают защиту от коррозии.
Для получения дополнительной информации о окраске с высоким содержанием цинка, например о характеристиках покрытия и нанесении краски, посетите эту статью AGA.
Полиуретановое верхнее покрытие
Полиуретановое верхнее покрытие (также известное как уретановое покрытие или герметик и эпоксидное покрытие) — самый популярный метод защиты от коррозии. Это особенно надежный и экономичный выбор для защиты от коррозии в коммерческих зданиях, где используется нержавеющая и углеродистая сталь. Этот высококачественный верхний слой представляет собой всепогодный герметик, который защищает от коррозии, а также от следующего:
- Царапины
- Удар
- Истирание
- Химическое воздействие
- Природные элементы, включая ультрафиолетовые (УФ) лучи и снег
Помимо защиты от коррозии, полиуретановое верхнее покрытие обеспечивает приятный и долговечный внешний вид готовому металлу.
«Уретановое покрытие представляет собой тонкую пленку с глянцевым покрытием с исключительными погодными характеристиками», — сообщает Cor-Pro Systems, компания по защите от коррозии из Хьюстона.
Для получения дополнительной информации о полиуретановом верхнем покрытии посетите страницу Cochran & Mann «4 поверхности, получающие выгоду от уретановых покрытий».
Порошковое покрытие
Порошок, являющийся прямой альтернативой краске, также может покрывать сталь для защиты от коррозии. Заводские профессионалы либо распыляют электростатически заряженный порошок на стальную деталь в кабине, либо опускают деталь в слой псевдоожиженного порошка.
После порошкового покрытия стальная деталь отверждается в печи, нагретой до температуры от 375 до 400 градусов по Фаренгейту. Порошок растекается по детали, превращается в гель и при высыхании становится прочным и прочным.
Порошковые покрытия
могут включать в себя различные цвета и различные составы для удовлетворения конкретных потребностей коммерческого проекта, таких как дополнительная защита от истирания, химического воздействия или УФ-лучей. В отличие от популярного варианта полиуретановой краски для стали, регулярно обслуживаемое порошковое покрытие не трескается, не отслаивается, не отслаивается и не отслаивается.
Предотвращение коррозии необходимо для поддержания эстетического вида коммерческого экстерьера, в котором используется сталь. Также необходимо предусмотреть герметик для экстремальных погодных условий, особенно дождя.
Покраска с высоким содержанием цинка, верхнее покрытие из полиуретана или эпоксидной смолы и порошковое покрытие — все это методы защиты от коррозии, которые коммерческая окрасочная компания может предоставить малым и крупным предприятиям, использующим нержавеющую или углеродистую сталь.
Для получения дополнительной информации о методах предотвращения коррозии и дуплексных системах (использующих более одного метода предотвращения коррозии для максимальной защиты) нажмите кнопку ниже, чтобы загрузить Руководство Cochran & Mann по методам предотвращения коррозии:
17.5: Коррозия и ее предотвращение
Цели обучения
- Чтобы понять процесс коррозии.
Коррозия — это гальванический процесс, при котором металлы разрушаются в результате окисления — обычно, но не всегда, до их оксидов. Например, при воздействии воздуха ржавчина железа, потускнение серебра, а также медь и латунь приобретают голубовато-зеленую поверхность, называемую патиной. Из различных металлов, подверженных коррозии, железо является наиболее важным с коммерческой точки зрения.По оценкам, только в Соединенных Штатах ежегодно тратится 100 миллиардов долларов на замену железосодержащих объектов, разрушенных коррозией. Следовательно, разработка методов защиты металлических поверхностей от коррозии является очень активной областью промышленных исследований. В этом разделе мы описываем некоторые химические и электрохимические процессы, вызывающие коррозию. Мы также исследуем химическую основу некоторых распространенных методов предотвращения коррозии и обработки корродированных металлов.
Коррозия — это РЕДОКС-процесс.
В условиях окружающей среды окисление большинства металлов является термодинамически самопроизвольным, за исключением золота и платины. Поэтому на самом деле несколько удивительно, что какие-либо металлы вообще полезны во влажной, богатой кислородом атмосфере Земли. Однако некоторые металлы устойчивы к коррозии по кинетическим причинам. Например, алюминий в банках для безалкогольных напитков и в самолетах защищен тонким слоем оксида металла, который образуется на поверхности металла и действует как непроницаемый барьер, предотвращающий дальнейшее разрушение.Алюминиевые банки также имеют тонкий пластиковый слой для предотвращения реакции оксида с кислотой в безалкогольном напитке. Хром, магний и никель также образуют защитные оксидные пленки. Нержавеющие стали отличаются высокой устойчивостью к коррозии, поскольку они обычно содержат значительную долю хрома, никеля или того и другого.
В отличие от этих металлов, когда железо корродирует, оно образует красно-коричневый гидратированный оксид металла (\ (\ ce {Fe2O3 \ cdot xh3O} \)), широко известный как ржавчина, который не обеспечивает плотной защитной пленки (рис. \ (\ PageIndex {1} \)).Вместо этого ржавчина постоянно отслаивается, обнажая поверхность свежего металла, уязвимую для реакции с кислородом и водой. Поскольку для образования ржавчины требуются кислород и вода, железный гвоздь, погруженный в деоксигенированную воду, не ржавеет даже в течение нескольких недель. Точно так же гвоздь, погруженный в органический растворитель, такой как керосин или минеральное масло, не будет ржаветь из-за отсутствия воды, даже если растворитель насыщен кислородом.
Рисунок \ (\ PageIndex {1} \): Ржавчина, результат коррозии металлического железа.Железо окисляется до Fe 2 + (водн.) На анодном участке на поверхности железа, который часто является примесью или дефектом решетки. Кислород восстанавливается до воды в другом месте на поверхности железа, которое действует как катод. Электроны передаются от анода к катоду через электропроводящий металл. Вода является растворителем для Fe 2 + , который образуется изначально и действует как солевой мостик. Ржавчина (Fe 2 O 3 • xH 2 O) образуется в результате последующего окисления Fe 2 + кислородом воздуха.o_ {cell} \) для процесса коррозии (уравнение \ (\ ref {Eq3} \)) указывают на то, что существует сильная движущая сила для окисления железа O 2 в стандартных условиях (1 MH + ) . В нейтральных условиях движущая сила несколько меньше, но все же заметна (E = 1,25 В при pH 7,0). Обычно реакция атмосферного CO 2 с водой с образованием H + и HCO 3 — обеспечивает достаточно низкий pH для увеличения скорости реакции, как и кислотный дождь.Производители автомобилей тратят много времени и денег на разработку красок, которые плотно прилегают к металлической поверхности автомобиля, чтобы предотвратить контакт насыщенной кислородом воды, кислоты и соли с основным металлом. К сожалению, даже самая лучшая краска подвержена царапинам или вмятинам, а электрохимическая природа процесса коррозии означает, что две относительно удаленные друг от друга царапины могут работать вместе как анод и катод, что приводит к внезапному механическому отказу (Рисунок \ (\ PageIndex { 2} \)).
Рисунок \ (\ PageIndex {2} \): Небольшие царапины на защитном лакокрасочном покрытии могут привести к быстрой коррозии железа. Отверстия в защитном покрытии позволяют восстанавливать кислород на поверхности при большем контакте с воздухом (катод), в то время как металлическое железо окисляется до Fe 2 + (водн.) На менее незащищенном участке (анод). Ржавчина образуется, когда Fe 2 + (водный) диффундирует в место, где он может реагировать с атмосферным кислородом, который часто находится далеко от анода.Электрохимическое взаимодействие между катодным и анодным участками может вызвать образование большой ямы под окрашенной поверхностью, что в конечном итоге приведет к внезапному отказу с небольшим видимым предупреждением о том, что произошла коррозия.
Профилактическая защита
Одним из наиболее распространенных методов предотвращения коррозии железа является нанесение защитного покрытия из другого металла, который труднее окисляется. Например, смесители и некоторые внешние детали автомобилей часто покрываются тонким слоем хрома с помощью электролитического процесса.Однако с увеличением использования полимерных материалов в автомобилях использование хромированной стали в последние годы сократилось. Точно так же «жестяные банки», в которых хранятся супы и другие продукты, на самом деле состоят из стального контейнера, покрытого тонким слоем олова. Хотя ни хром, ни олово по своей природе не устойчивы к коррозии, они оба образуют защитные оксидные покрытия, препятствующие доступу кислорода и воды к лежащей в основе стали (сплаву железа).
Рисунок \ (\ PageIndex {3} \): Гальваническая коррозия.Если железо контактирует с более стойким к коррозии металлом, таким как олово, медь или свинец, другой металл может действовать как большой катод, что значительно увеличивает скорость восстановления кислорода. Поскольку восстановление кислорода связано с окислением железа, это может привести к резкому увеличению скорости окисления железа на аноде. Гальваническая коррозия может возникнуть, когда два разнородных металла соединены напрямую, что позволяет электронам переноситься от одного к другому.{2 +}} \) (E ° = -0,14 В) и Fe 2 + (E ° = -0,45 В) в таблице P2 показывают, что \ (\ ce {Fe} \) окисляется легче, чем \ (\ ce {Sn} \). В результате более стойкий к коррозии металл (в данном случае олово) ускоряет коррозию железа, действуя как катод и обеспечивая большую площадь поверхности для восстановления кислорода (рисунок \ (\ PageIndex {3} \)). . Этот процесс наблюдается в некоторых старых домах, где медные и железные трубы были напрямую соединены друг с другом. Менее легко окисляемая медь действует как катод, заставляя железо быстро растворяться возле соединения и иногда приводя к катастрофическому отказу водопровода.{2 +} _ {(aq)} + 2H_2O _ {(l)}} _ {\ text {total}} \ label {Eq7} \]
Более химически активный металл вступает в реакцию с кислородом и в конечном итоге растворяется, «жертвуя собой» ради защиты железного предмета. Катодная защита — это принцип, лежащий в основе оцинкованной стали, которая представляет собой сталь, защищенную тонким слоем цинка. Оцинкованная сталь используется в различных предметах, от гвоздей до мусорных баков.
Кристаллическая поверхность горячеоцинкованной стальной поверхности. Это служило как профилактической защитой (защищая нижележащую сталь от кислорода в воздухе), так и катодной защитой (после воздействия цинк окисляется раньше, чем нижележащая сталь).
По аналогичной стратегии, расходуемые электроды , использующие, например, магний, используются для защиты подземных резервуаров или трубопроводов (Рисунок \ (\ PageIndex {4} \)). Замена расходуемых электродов более рентабельна, чем замена железных предметов, которые они защищают.
Рисунок \ (\ PageIndex {4} \): Использование жертвенного электрода для защиты от коррозии. Подключение магниевого стержня к подземному стальному трубопроводу защищает трубопровод от коррозии. Поскольку магний (E ° = −2.37 В) окисляется гораздо легче, чем железо (E ° = -0,45 В), стержень из магния действует как анод в гальваническом элементе. Таким образом, трубопровод вынужден действовать как катод, на котором восстанавливается кислород. Грунт между анодом и катодом действует как солевой мостик, замыкающий электрическую цепь и поддерживающий электрическую нейтральность. Когда Mg (ы) окисляется до Mg 2 + на аноде, анионы в почве, такие как нитрат, диффундируют к аноду, чтобы нейтрализовать положительный заряд. Одновременно катионы в почве, такие как H + или NH 4 + , диффундируют по направлению к катоду, где они пополняют запас протонов, которые расходуются по мере восстановления кислорода.\ circ _ {\ textrm {total}} = \ textrm {1,68 V}
\ end {align *} \]
Со временем железные винты растворятся, и лодка развалится.
- B Возможные способы предотвращения коррозии в порядке уменьшения стоимости и неудобств: разборка лодки и ее восстановление с помощью бронзовых винтов; вынуть лодку из воды и хранить в сухом месте; или прикрепление недорогого металлического цинка к карданному валу в качестве расходуемого электрода и его замену один или два раза в год.Поскольку цинк является более активным металлом, чем железо, он будет действовать как расходуемый анод в электрохимической ячейке и растворяться (уравнение \ (\ ref {Eq7} \)).
Цинковый расходный анод (закругленный объект, привинченный к нижней стороне корпуса), используемый для предотвращения коррозии винта в лодке за счет катодной защиты. Изображение Реми Каупп используется с разрешения.
Упражнение \ (\ PageIndex {1} \)
Предположим, что водопроводные трубы, ведущие в ваш дом, сделаны из свинца, а остальная сантехника в вашем доме — из железа.Чтобы исключить возможность отравления свинцом, вы вызываете сантехника для замены свинцовых труб. Он называет вам очень низкую цену, если он сможет использовать имеющиеся у него запасы медных труб для выполнения этой работы.
- Вы принимаете его предложение?
- Чем еще должен заниматься сантехник у вас дома?
- Ответьте на
Нет, если вы не планируете продать дом очень скоро, потому что соединения труб \ (\ ce {Cu / Fe} \) приведут к быстрой коррозии.
- Ответ б
Любые существующие соединения \ (\ ce {Pb / Fe} \) должны быть тщательно осмотрены на предмет коррозии железных труб из-за соединения \ (\ ce {Pb – Fe} \); менее активный \ (\ ce {Pb} \) будет служить катодом для восстановления \ (\ ce {O2} \), способствуя окислению более активного \ (\ ce {Fe} \) поблизости.
Сводка
Коррозия — это гальванический процесс, который можно предотвратить с помощью катодной защиты.Разрушение металлов в результате окисления — это гальванический процесс, называемый коррозией. Защитные покрытия состоят из второго металла, который окисляется труднее, чем защищаемый металл. В качестве альтернативы, на металлическую поверхность можно нанести более легко окисляемый металл, тем самым обеспечивая катодную защиту поверхности. Тонкий слой цинка защищает оцинкованную сталь. Жертвенные электроды также могут быть прикреплены к объекту для его защиты.
Защита от коррозии — ингибиторы
В зависимости от класса коррозии среды, которой подвергается основание, будут рекомендованы различные краски.Чистые барьерные покрытия считаются подходящими для класса коррозии C1-C3, в то время как добавление ингибитора, такого как Inhibispheres®, может улучшить защиту от коррозии покрытия, что делает его пригодным для сред C1-C5.
Краски для защиты от коррозии можно разделить на активные, жертвенные или пассивные, в зависимости от их действия. Краски, предотвращающие коррозию исключительно за счет барьерной защиты, известны как пассивная защита от коррозии, поскольку они не изменяют поведение коррозионного агента и не изменяют склонность основы к коррозии.В этих красках также могут использоваться слои металлических или силикатных чешуек для создания извилистого пути, что затрудняет попадание воды, которая пробила поверхность краски, на основу. Однако, если пленка краски повреждена, коррозия произойдет очень быстро из-за отсутствия защиты от окружающей среды. Некоторые из обычно используемых пассивных антикоррозионных красок включают алкидные, акриловые, аминные эпоксидные смолы, полиамидные эпоксидные смолы, уретан и полиуретан.
Эти краски также используются как для протекторной защиты, так и для активной защиты от коррозии.В защитных покрытиях используется как барьерная защита, так и катодная защита для защиты подложки, причем катодная защита используется при разрыве пленки краски (например, царапина, сколы). В этих покрытиях используется присутствие более активных металлов, которые коррозируют преимущественно субстрат, помогая предотвратить коррозию нижнего слоя. Типичные антикоррозионные пигменты включают фосфат цинка (ZnPO4), цинковую пыль или соединения хромата 6+ (CrVI). Существует ряд проблем, связанных с использованием этих соединений в антикоррозионных красках, с серьезными проблемами для здоровья и окружающей среды, возникающими в результате использования как цинковых, так и хроматных соединений.Это привело к ограничению использования шестивалентного хрома в Европе и других странах, при этом европейским компаниям требуется специальное и очень ограниченное разрешение REACH на использование этих соединений. Во всем мире настоятельно рекомендуется отказаться от использования этих типов материалов в антикоррозионных покрытиях. Краски для активной защиты от коррозии содержат добавку, которая может влиять на реакции коррозии, вызванные воздействием коррозионных элементов, нарушая химические реакции коррозии.Они часто используются в грунтовках.
Inhibispheres® обеспечивает активную защиту от коррозии при включении в традиционную систему барьерной окраски и способствует самовосстановлению пленки краски при повреждении, предотвращая возникновение коррозии. Благодаря своей однородной дисперсии по всему покрытию, Inhibispheres® обеспечит защиту независимо от места разрыва покрытия, диффундируя к месту коррозии, чтобы быстро предотвратить дальнейшую коррозию. Разработанный со специально подобранными ингибиторами коррозии, Inhibispheres® может использоваться как на стальных, так и на алюминиевых основах, в системах окраски как на водной основе, так и на основе растворителей, а длительное высвобождение Inhibispheres® означает, что покрытие обеспечит длительную защиту от коррозии.
II. Типы коррозии и методы защиты
катион
1с
ограниченный,
на
низкое значение
от
potei; tia-1 разница с проводящими средами с малым анодом
-катод
разделение
Impr
Защита по току essed дает
следующие преимущества:
1. Широкий диапазон разности потенциалов
—
достижимо
2.
Потенциальная разница
re
nc
e может быть
скорректирована для соответствия требованиям
из
изменяющихся условий.
3. Большие площади можно защитить. даже
пайков с большим анодом-катушкой
ode
se
pa-
и те, которые расположены в среде с высоким сопротивлением
.
4.
Необходимо несколько анодов.
Th
e Наиболее серьезные недостатки:
1.
Требование
к надежному источнику питания
Источник питания
2.
Риск
из
избыточная защита Неправильная полярность
соединения возможны
4. Непросто достичь равномерного потенциала электрода на поверхности металла
.
(b)
Anodic
pro
tection
Принцип
из
анодная защита
зависит от поддержания стабильного слоя пассии
на металлической поверхности.
Добавление
из
элементов, таких как палладий
или
co
pp
er в виде компонентов с низкой концентрацией
в легированной стали производит гальву
ni
c анодная защита
000 л.
Анодная защита наложенным током
используется в гораздо меньшей степени, чем его катодный аналог
, хотя примеры
включают защиту резервуаров для хранения химикатов
(Рисунок 5) и теплообменников.
На
ввод в эксплуатацию. подаваемый ток должен на
превышать критическое значение va
lu
e, необходимое для пропуска поверхности
. Таким образом,
футов
er, происходит уменьшение
в токе
, так что подаваемый ток
поддерживает пассивную пленку
.
Текущий
тогда минимален. Например, нержавеющая сталь и титановые сплавы
могут быть защищены в кислотном электролите средствами
из
импресс
ed
токовая анодная защита.
Покрытия поверхностей
Для защиты поверхности
eta
л может применяться широкий спектр
из
покрытий поверхности
.
Причитающийся
Возмещение должно быть
должно быть выплачено
во избежание локальных повреждений, которые могут
сделать
участков поверхности уязвимыми для
коррозии. Примеры
из
поверхностного покрытия
защитных слоев включают:
1.
Краска
или
полимерная облицовка.
2. Оксиды металлов, такие как
анодирование
алюминия
.
3.
Металлическое покрытие, например,
сталь
l sh
ee
t elec-
tro
покрытие цинком
или
hot
-d
0003
-d
оцинкованное железо.
Раствор
Цинк
Сталь
(a)
Counrer-
ele
ctrode
To
porenrio
s
rode
000
000
000
000
ror
Рисунок
5.Анодная защита
s1ee /
1ank
by
1he
application
of
po1ential
из
1he
1ank
surface
is
maimained
a1
a
100002000
000
специализированный блок питания
ly
известный
как
a
po1en1ios1at.
В случаях
ll
защитных покрытий,
последствий дефектов
покрытия
(возможно
из-за
подготовки поверхности) или
повреждений
из
покрытие
(возможно
с во время установки
или
в эксплуатации) на коррозию
необходимо учитывать. Примеры:
, показанные на рисунке 6, где гальваническое кор-
at
Поврежденная зона
в лакокрасочном покрытии на металле
(Рисунок 6 (c)).
ВЫВОДЫ
Большое разнообразие различных типов коррозии
может происходить в зависимости от конкретных условий
металлической поверхности. Номер
из
, эти
зависят от самого металла
, а остальные
связаны с окружающей средой. Доступен широкий спектр профилактических методов
из
для
контроль коррозии; все они зависят от
при удалении компонентов
в
кор-
розиционной ячейке или (чаще
y)
от
, снижая скорость электродных процессов.
БЛАГОДАРНОСТИ
Материал
, содержащийся в этом учебном пособии
n
ote
используется в лекциях по коррозии для первых
лет BSc Applied Chemis
tr
000
000
ed
Env
ironm
enta
l Science
and
BTEC
HNC / HND
курсы бакалавриата
и был адресован
в университеты
на краткосрочных курсах
на промышленных курсах
из Саутгемптона и Шеффилда.
авторов
благодарны за f
ee
dback from
их многочисленные работы
dent
s.
ДАЛЬНЕЙШИЕ
ЧТЕНИЕ
1. K.R. Trethewey and J.
Chamber
lain,
«Коррозия для студентов
из
Science
and Engineering», Longman Harlow,
1988.
-a
полезный низкоуровневый intr od
нацелен на
на
широкой читательской аудитории.
Solution
Олово
Сталь
(b)
2. У. Вранглен,
‘An
Введение в
Коррозия и защита металлов’
Chapman and Hall, London, 1985. ‘
— широкий охват
из
принципов.
3.
Дж. М. Вест, «Основная коррозия и
окисление», Эллис Хорвуд
Чичестер. 1980. ‘
-an excelle
nt
обработка
из
фундаментальные
термодинамика и кинетика.
4. E.Mattson, ‘Basic Corrosion Tech-
nology for Scientists
and
Engineers’
E
ll
is
Horwood, Chichester, 1989. ‘
-a
низкоуровневое введение с
множеством примеров из практики
.
5.
Д. Плетчер, «Первый курс по
электродным процессам»,
The
Electro-
chemical Consultancy, Romsey,
1991.
-a
Упрощенный электрохимический подход
к методам электрохимии.
6.
Д. Плетчер и Ф. К. Уолш, «Industrial
Electrochemistry», 2-е изд.,
Chapman and Hall, London,
1990 ».
— фундаментальные
и
технологические
аспекты
из
коррозия помещается
в
за-
в рамках
из
другие
электрохимические
электрические
процессы.
7.
M.G.Fontana, «Corrosion En-
gineering», 3rd
Ed
n
.,
McGraw-Hill
Int.
Ed
ns., New York, 1987.
— специализированный текст с обширным охватом
принципов и практики
.
8. U.R.Evans,
‘An
Introduction to
Metallic Corrosion
‘,
3rd
Edn, Arnold,
London, 1981.
-one
из
классический
te
xt
книги по принципам
из
коррозия и защита.
9.
P.Neufeld (Ed.),
‘A
Рабочая группа
Отчет
о практической коррозии
Принципы
Европейский
Федерация
ti
Публикации по коррозии No.2,
The
Institute
of
Metals, London,
1989.
— полезный
summa
ry
of
принципы
с описанием
simple
эксперт-
им
энц.
10. F.C. Уолш, ‘Электродные реакции при чистовой обработке металлов
· и электрохимические
Реакции в ячейках при чистовой обработке металлов,
Trans.Inst. Металлическая отделка.,
69
(3),
(1991), 107-116.
— первые две части
из
Учебник серии
es
по обработке металла.
11.
M.G. Fontana
и
ND Greene,
‘Corrosion Engin
eer
ing’, McGraw-
Hill, New York, 1967.
-a classic
te
xt
xt принципы
из
коррозионная инженерия и про-
tec
ti
on.
12. F.C. Уолш и Б.Д. Баркер,
‘Th
e
Общий
Скорость
с электрода
Реакции; Законы Фарадея для электролиза
», Пер. Inst. Металл
Финиш., 69 (4), (1991) 155-162.
-t
he
третья
и
четвертая статьи в этой серии руководств
.
Woter
+ низкий
конус
.электролиты
(от co., so ,, Noell
Point
(c)
Металл
Fi
gu
re
6. Коррозия
из
a subs1rme al dama
d или
def
ee
l площадки
in
охлаждения:
(a)
z
in
c-
p / a1
0002 ed
0002 ed
0003
l
wh
ere
1h
ez
in
c анодный
с
по отношению к базовой стали
и цинку c
или
rs
r
предпочтительно: (b)
олово
уголь
is
ca1hodic
wilh
res
кожура
10
1he
und
erlying s
1eel
и
Rapid,
локальная коррозия
из
th
e sub irate занимает
pla
ce:
000
000
000
e неблагоприятный случай
из
a small ano
de
ar
ea и
lar
ge
caihode area: (
c)
lo
коррозии a me / al
subs1ra1
e
может произойти
на поврежденном участке
на месте
coa1
i
11
g.
(во всех случаях предполагается, что кислородный красный
11
c
1i
на
равен
1h
e c
a1h
ode process).
120
Как предотвратить ржавчину: 9 способов для любой ситуации
Ржавчина может быстро стать большой проблемой. Это нарушает функциональность и стабильность важного оборудования и может стоить вашему бизнесу тысячи. Знание того, как эффективно предотвратить ржавчину, может сэкономить ваши деньги и предотвратить серьезные проблемы.Как и во многих других случаях, некоторые небольшие профилактические меры заранее могут сэкономить вам много денег, времени и разочарований в будущем. Мы собрали лучшие способы предотвращения ржавчины, чтобы вы могли найти стратегию, которая лучше всего подходит для вашего оборудования или деталей.
Как предотвратить образование ржавчины в любой ситуации
Короче говоря, лучший способ предотвратить ржавчину — это предотвратить попадание влаги на металл или использовать материал, который корродирует медленнее. Ниже приведены лучшие способы предотвращения ржавчины. Мы обсудим, как предотвратить ржавчину, используя каждую стратегию, более подробно позже в этом посте.
- Используйте сплав: Использование сплавов, таких как нержавеющая сталь, является одним из наиболее распространенных способов предотвращения или замедления образования ржавчины. Нержавеющая сталь подходит не для всех областей применения и не экономична, но для многих она подойдет.
- Нанесите масло: Покрытие из масла поможет предотвратить образование ржавчины или замедлить ее возникновение, так как препятствует проникновению влаги к железу в металле. Однако маслянистая поверхность может создавать проблемы для некоторых инструментов или машин, а также создавать проблемы для окружающей среды и здоровья человека.
- Нанесите сухое покрытие: Специальные антикоррозионные продукты высыхают без остатка и образуют защитный барьер над металлическими частями и оборудованием. Они эффективны для продуктов, которые используются, при транспортировке, хранении и т. Д.
- Покраска металла: Краска хорошего качества замедлит ржавление, предотвращая попадание влаги на металл.
- Правильное хранение: Храните металлические детали или изделия в местах с низкой влажностью или в среде с контролируемой температурой и влажностью, чтобы значительно замедлить образование ржавчины.Также полезно использовать в этом хранилище адсорбционные осушители.
- Оцинковка: Оцинковка покрывает железо или сталь цинком для защиты от ржавчины. Цинк коррозирует гораздо медленнее, чем железо или сталь, поэтому он очень эффективен для замедления образования ржавчины.
- Посинение: Этот процесс создает слой магнетита поверх металла для предотвращения ржавчины. Металл необходимо регулярно смазывать маслом, чтобы поддерживать устойчивость к ржавчине, при этом он станет синим или черным.
- Порошковое покрытие: Слой акрила, винила, эпоксидной смолы или других веществ предотвращает попадание влаги на металл, тем самым предотвращая ржавчину.
- VCI Упаковка: Ингибиторы паровой коррозии (VCI) представляют собой тип химического соединения, которое при введении в различные упаковочные материалы защищает металлы, выделяя пары, устраняющие ржавчину, в замкнутое воздушное пространство для предотвращения коррозии на металлической поверхности.
9 способов предотвратить ржавчину
1. Используйте сплав
Многие наружные конструкции, такие как этот мост, сделаны из кортеновской стали, чтобы уменьшить влияние ржавчины.
Хотя все металлы подвержены коррозии, каждый из них подвержен коррозии с разной скоростью.Вот почему сплавы, состоящие из двух или более разных металлов, устойчивы к ржавчине. Технически все виды стали уже являются сплавами, так как они сделаны из железа и углерода. Однако добавление других металлов, таких как хром, никель, марганец и другие, приведет к созданию различных типов стальных сплавов.
Некоторые из них, например нержавеющая сталь, сделаны для полного предотвращения ржавчины. Хотя они, конечно, не полностью устойчивы к коррозии, они будут ржаветь гораздо медленнее. Другие сплавы, такие как сталь COR-TEN, накапливают слой ржавчины, но при правильных условиях перестают ржаветь.
Изменение состава стали также изменяет ее ударную вязкость, проводимость, внешний вид и многие другие свойства. Важно подумать о том, как предотвратить ржавчину, но также убедиться, что стальной сплав подходит для применения. Кроме того, примите во внимание используемые методы сварки и окружающую среду, так как все они будут влиять на скорость коррозии.
2. Нанесите масло
Большинство владельцев оружия знают, как важно держать огнестрельное оружие в хорошем состоянии, даже если оно не используется.Масло не только смазывает металлические детали и позволяет им двигаться с меньшим трением, но и создает защитный барьер от ржавчины. Принцип здесь довольно прост; с покрытием из масла влага не может вступить в реакцию с железом в металле и вызвать ржавчину.
Хотя покрытие маслом может быть простым и эффективным способом предотвращения ржавчины, оно определенно не идеально. Масло также затрудняет захват объекта и может привести к скольжению или разбалансировке деталей. Он также может быть грязным и неприятным в работе.Наконец, смазку нужно проводить неоднократно, что требует времени и энергии.
Нанесение сухого покрытия с подобным продуктом может быть полезным и универсальным способом предотвращения ржавчины.
3. Нанесите сухое покрытие
Некоторые продукты специально созданы для предотвращения ржавчины. Эти продукты работают по тому же принципу, что и масло, создавая защитный барьер от ржавчины, но не оставляют следов. Для металлических деталей или компонентов, которые должны оставаться чистыми или обеспечивать надежный захват, идеально подходит антикоррозионное сухое покрытие.
Средства для защиты от ржавчины для сухого покрытия, такие как средство для защиты от ржавчины ARMOR’s Dry Coat Rust Preventative, можно наносить распылением, окунанием или смывкой. Как только они высохнут, защитный барьер установлен. Металл не будет выглядеть и ощущаться по-другому, поэтому его применение останется прежним. Сухие покрытия также можно использовать в сочетании с другими способами предотвращения ржавчины. Например, вы можете нанести сухое покрытие на окрашенный или порошковый объект, чтобы повысить уровень защиты.
4. Покрасьте металл
Краски
также создают защитный слой на металлических предметах и предотвращают попадание на них влаги.Конечно, никакие барьеры не могут полностью остановить проникновение влаги, но покраска может быть простым и легким способом замедлить образование ржавчины. Если вы уже хотите покрасить объект в другой цвет или получить другую отделку, это идеальное решение.
Важно использовать правильную краску для предотвращения ржавчины. Краска должна прилипать к металлу, поэтому помните, какой тип краски вы используете, а также какие виды отделки уже нанесены на металл. Вам также понадобится краска на масляной основе, а не водорастворимая, если вы ожидаете, что на детали будет слишком много влаги или загрязнений.Наконец, будьте осторожны со сварными соединениями или болтами. Если на окрашенном слое есть слабые места или незаполненные щели, эти участки начнут ржаветь.
Начните устранять промышленную ржавчину прямо сейчас
Наш интерактивный инструмент ASK JERRY готов определить и диагностировать причину появления ржавчины
ПОЛУЧИТЕ СВОЙ ОТВЕТ НА РЖАВУ
5. Правильное хранение
Лучший способ предотвратить ржавчину может быть и самым очевидным — беречь объект от влаги. Вода вступает в реакцию с железом с образованием ржавчины, поэтому в окружающей среде без влаги ржавчина не образуется.Однако имейте в виду, что даже обычный воздух содержит некоторую влагу в виде влажности. Чтобы полностью предотвратить ржавчину, вам понадобится воздухо- и водонепроницаемое уплотнение. Это, конечно, затрудняет использование объекта, поэтому имеет смысл предотвратить ржавчину во время хранения или транспортировки.
6. Оцинковка
Цинкование — это защитное покрытие из цинка на железе или стали. Поскольку цинк корродирует примерно в 30 раз медленнее, чем железо, цинкование может быть дешевым и эффективным способом предотвращения ржавчины.
Как и все способы предотвращения ржавчины, цинкование имеет ограничения. Покрытие из цинка не противостоит суровым воздействиям окружающей среды, таким как кислотный дождь или соль. Цинкование также изменяет внешний вид металла, а дополнительный слой может покрывать части детали, например резьбу на винте.
7. Воронение
Процесс воронения стали фактически создает новый слой, похожий на ржавчину, но гораздо менее разрушительный. Посинение создает слой магнетита, также называемого черным оксидом железа, и придает металлам черный или одноименный синий цвет.
Посинение обычно достигается воздействием высоких температур и солевого раствора. Этот процесс обычно используется для экономичной защиты огнестрельного оружия от ржавчины. Воронение работает лучше всего, когда сталь также регулярно смазывается маслом.
8. Порошковое покрытие
Порошковое покрытие часто используется для быстрой «окраски» объекта на сборочной линии. Во-первых, статическое электричество связывает порошкообразное вещество из акрила, полиэстера, эпоксидной смолы, полиуретана или чего-то еще с металлическим предметом. Затем порошок плавится в печи в однородный твердый слой.Поскольку жидкость не используется, порошковое покрытие идеально подходит для определенных отделок или деталей.
Порошковое покрытие, как и окраска, покрывает металлический компонент защитным слоем. Этот слой предотвратит попадание влаги на металл и, следовательно, предотвратит появление ржавчины. Чтобы порошковое покрытие эффективно предотвращало ржавчину, покрытие должно быть целым. Любые слабые места обнажат металл и создадут вход для ржавчины.
9. Упаковка VCI
VCI Packaging — это простой в использовании, чистый и сухой вариант упаковки для предотвращения ржавчины на металлических и металлических деталях.Ингибиторы паровой коррозии (VCI) представляют собой тип химического соединения, используемого для защиты черных и цветных металлов от ржавчины и коррозии, которые вводятся в упаковочные материалы, включая полимерные пленки, бумагу, эмиттеры, древесно-стружечные плиты, влагопоглотители и многие другие компоненты.