Укладка инфракрасного теплого пола: Описание полного монтажа инфракрасного теплого пола своими руками

Содержание

Монтаж инфракрасного теплого пола — статья от пользователя ОБИ Клуба

Система инфракрасного теплого пола – новейшая разработка, которая набирает популярность среди потребителей. 

Обладая рядом преимуществ перед уже известными видами теплых полов, инфракрасный обогрев заслуженно занимает место в сердцах покупателей.

Однако, монтаж инфракрасного пола, как сложного технического устройства, требует знания теоретических основ и правил безопасности, с которыми я познакомлю вас в этой статье. 

Инфракрасный теплый пол представляет собой систему, излучающую тепло посредством генерации инфракрасного излучения. Различают два вида инфракрасных полов:

  • Стержневой инфракрасный пол, состоящий из графитовых стержней с карбоновым материалом внутри;
  • Пленочный инфракрасный пол, в котором полосы карбоновой пасты покрыты термоустойчивой полиэтиленовой пленкой.

Пленочный теплый пол пользуется большей популярностью из-за удобства монтажа и транспортировки. К преимуществам инфракрасного теплого пола относятся следующие факторы:

  • Устройство нагревает не воздух в помещении, а объекты, находящиеся в комнате. Благодаря такой особенности, не страдают качественные показатели воздуха.
  • Инфракрасные лучи безопасны для человека, животного и растения, они по структуре схожи с ультрафиолетом.
  • С укладкой инфракрасного пола справится новичок в строительном деле, достаточно базовых знаний об устройстве и технике безопасности.
  • Инфракрасный пол разрешено укладывать под любой вид финальной отделки: линолеум, ковролин, ламинат и даже паркетную доску.

Рассмотрим пошаговую инструкцию по укладке и подключению инфракрасного пола у вас дома.

  • Выбор теплоизоляции. Теплоизоляционный слой необходим для профилактики утечки тепла через грунт или основание пола. Выбор утеплителя для инфракрасного пола зависит от расположения помещения: в частном доме, в котором под полами только грунт используйте пенополистирол (пенопласт), если снизу отапливаемое помещение – достаточно вспененного фольгированного полиэтилена.

Поскольку инфракрасный теплый пол является электрическим устройством, необходимо соблюдать правила использования и технику безопасности при его установке, чтобы избежать возгорания и порчи материалов. Перечислю несколько наиболее распространенных ошибок, избежать которые проще, чем исправить последствия.

  • Систему теплого пола необходимо подключать напрямую к щитку, отдельной линией.
  • Использование УЗО и правильный подбор сечения кабелей, исходя из значений тока, требования безопасности, которые не только защитят от возгорания, но и продлят срок службы всей системы.

 

  • Пока пленка свернута в рулон и не расстелена в один слой на основании пола – тестировать систему запрещено.
  • Перед заливкой цементной стяжки проверьте инфракрасный пол на предмет обрывов. Для этой задачи используйте электрический тестер.
  • Продумайте расположение мебели в комнате до начала работ по укладке теплого пола. Точечная нагрузка на инфракрасную пленку запрещена, приводит к оплавлению контактов.

Соблюдение правил установки и дальнейшего использования инфракрасной пленки делает систему теплого пола универсальной и долговечной.

Вам могут пригодиться

Монтаж инфракрасного теплого пола цена за м2 в Москве

Инфракрасный пол – слой пленки с электроподогревом, который кладется под ламинат или под плитку и делает пол теплым. Это удобно, приятно и к тому же полезно для здоровья.

Преимущества

По дому можно ходить не только без тапок, но даже без носков. Более того, пол станет настолько приятным, что вам самим захочется ощущать тепло кожей.

Пленочный пол экономичнее, ведь расходует меньше энергии. Классический электрический обогреватель имеет очень низкий КПД и к тому же неэффективен по своему строению. Для сравнения: расход мощности в час для обогревателя средних размеров – около 1,5 кВт (1500 Вт), а расход одного кв м пола с подогревом при выделении того же количества тепла – 0,5 кВт, то есть в три раза меньше. Расход термопола Calea – 45-60 Вт на м² в час, но работает подогрев не круглосуточно, а лишь тогда, когда пол «остывает». В холодные дни он работает по 10-30 минут в час.

Обогреватель нагревает неравномерно: образуются «теплые» зоны у обогревателя и «холодные» в дали от него, где эффект обогрева вообще не ощущается. Теплый пол хорош тем, что нагревает снизу вверх равномерно по всей площади, давая больше всего тепла ногам и оставляя минимум для потолка.

Как проходит укладка + прайс лист

Укладку пола делают наши опытные мастера из нашей компании с большим стажем. Работа очень простая: мы снимаем пол, делаем стяжку пленки и подключение нагревательных кабелей, после чего наконец укладываем пол обратно. Стоимость работ и цена материалов указана в таблице ниже. Мы прозрачны для своих клиентов.

Ответы на вопросы

Как это работает?

Система в корне отличается от технологии нагревателя. ИК излучение – это электромагнитное излучение, которое нагревает предметы и примыкает к красному световому спектру. Можно сказать, что это невидимые волны, которые не попадают в спектр глаза, но ощущаются телом.

Будет ли тепло доходит до поверхности, если у нас толстая плитка?

Да, будет. Теплый пол излучает лучи в широком диапазоне. Он не создает тепло самонагреванием, а излучает тепловые волны, которые похожи на те, что излучает радиовышка или Wi-Fi роутер.

Это безопасно? Что если пол сгорит?

В плане пожарной безопасности это раз в десять лучше других видов отопления, ведь он не может устроить пожар, так как в нем отсутствует нагревательный элемент.

Как это влияет на организм? Не приведут ли волновые колебания к плохому самочувствию?

Наоборот, инфракрасные лучи даже полезны для организма. Среди полезных эффектов отмечают улучшение иммунной системы, гормонального фона, обезболивающий эффект и улучшение кровообращения.

Монтаж инфракрасного теплого пола под линолеум

Инфракрасный теплый пол под линолеум монтируют в качестве дополнительного или основного отопления. Перед укладкой необходимо составить схему раскладки термопленки с учетом особенностей планировки и меблировки помещения. Не рекомендуется выполнять монтаж пленки в местах установки тяжелой мебели: книжных и посудных шкафов, диванов. Пленочные теплые полы под линолеум монтируют на бетонное основание, черновой пол и по лагам. Конструктивные особенности основания влияют на технологию укладки.

Монтаж пленочного пола на ровное основание под линолеум

Для отапливаемого помещения рекомендуется купить инфракрасный теплый пол под линолеум мощностью 150 Вт/кв.м. Для необогреваемого помещения рекомендуемая мощность нагревательного элемента 220 Вт/кв.м. Выполняется укладка на ровное бетонного основания, плитку, шпунтованную доску. Монтаж инфракрасного теплого пола под линолеум производится в следующем порядке:

  1. На чистое основание укладывается отражающая подложка.
  2. Стыки между полосами подложки проклеиваются алюминиевым скотчем.
  3. Укладывается теплый пол на монтажный скотч.
  4. Выполняется подключение нагревательных элементов термопленки.
  5. Устанавливается и подключается терморегулятор.
  6. Выполняется проверка работы нагревательных элементов.
  7. Укладывается полиэтиленовая пленка с нахлестом 10 см, швы проклеиваются скотчем.
  8. Настилаются листы влагостойкой фанеры толщиной не менее 10 см. Между листами оставляют компенсационный зазор 2-3 мм.
  9. На фанеру настилают финишное напольное покрытие.

Не допускается монтировать инфракрасный пол под линолеум без слоя фанеры. По сравнению с теплым полом под ламинат — финишное напольное покрытие мягкое, в процессе эксплуатации можно легко повредить нагревательные элементы, 

Монтаж пленочного теплого пола по лагам

Конструкция пола по лагам более сложная. На подготовительном этапе выполняют следующие работы:

  1. Перед установкой лаг основание застилают слоем гидрозоляции.
  2. Укладывают лаги.
  3. Между деревянным брусом укладывают или засыпают теплоизоляцию.
  4. Укладывают лист влагостойкой фанеры или OSB.

На подготовленное ровное основание выполняют монтаж пленочного теплого пола под линолеум по приведенной выше схеме. Наличие слоя теплоизоляции между лагами позволяет экономно расходовать электроэнергию на обогрев помещения.

Практические советы по монтажу теплого пола

Укладывая пленочный теплый пол под линолеум, необходимо не допускать наложение листов термопленки. Финишное покрытие нельзя клеить к фанере мастиками или клеевыми составами. При нагреве эти средства могут выделять вредные вещества. Неравномерный нагрев вызывает вспучивание мастики – удалить такие дефекты сложно. Линолеум просто расстилают по поверхности. При большой площади помещения напольное покрытие крепят к фанере строительным степлером в малозаметных местах. От подвижек поможет фиксация скобами под плинтусом. Оптимальный температурный режим нагрева пола под линолеумом +25…+26°С.

 

Самостоятельная укладка инфракрасного теплого пола ← Информация

Монтаж теплых полов поможет вам за считанные минуты создавать требуемый температурный режим и комфортный микроклимат в комнате независимо от времени года и особенно актуальный в межсезонье. При выполнении укладки собственными силами можно вполне обойтись без дорогостоящих и трудоемких технологий.

Для данной технологии вам потребуются:

инфракрасная нагревательная пленка;

терморегулятор;

теплоизоляционный материал;

полиэтиленовая пленка толщиной от 150 мкр для гидроизоляции;

соединительный силовой провод;

монтажный скотч;

комплекты зажимов к2 (контактные зажимы и битумная изоляция).

Поэтапная укладка теплого пола:

Самостоятельный монтаж теплых полов под ламинат возможен в помещениях любого типа. Основание комнаты должно отвечать минимальным требованиям, т.е. оно должно быть ровным, на его поверхности не должны присутствовать трещины и бугры, основание должно быть гидроизолированным. Кроме этого в данном помещении должна присутствовать технологическая возможность подключения теплого пола к электрической сети переменного тока с напряжением 220 В.

Работы по укладке выполняются в два этапа:

Этап 1. Подготовка основания к монтажу теплого пола

1. Прежде чем приступить к укладке инфракрасной карбоновой пленки необходимо составить подробную масштабную схему помещения, где планируется монтаж теплого пола. На плане помещения необходимо указать места расположения инфракрасной пленки с указанием расстояния между полосами пленки, а также расположение силового соединительного провода и датчика температуры.

Составляя план, необходимо учитывать следующие нюансы:

Инфракрасная пленка не укладывается под крупногабаритными предметами мебели, такими как кровать, диван, шкаф и тд.;

Инфракрасная пленка укладывается не вплотную к стенам, поэтому требуется заложить отступ размером 10…40 сантиметров;

Оптимальное расстояние между отдельными полосами инфракрасной пленки – 1…5 сантиметров. НЕЛЬЗЯ укладывать пленку внахлест;

Для обеспечения наименьшего количества стыков и соединительных проводов наиболее оптимально укладывать пленку вдоль помещения;

Места соединения проводов и контактов наиболее оптимально располагать как можно ближе к стене. Оптимальное расположение под плинтусом или рядом с ним.

2. Перед монтажом теплого пола основание необходимо очистить от мусора и грязи, расстелить гидроизоляционную пленку с нахлестом 20-30 см и проклеить швы монтажным скотчем.

3. Монтаж теплоизоляционного материала. При монтаже теплого пола под ламинат теплоотражающая подложка должна закрывать всю площадь помещения. Если финишным покрытием пола в вашей комнате является ламинат, то в качестве наиболее оптимальных теплоизоляционных материалов рекомендуется использовать пробковую или лавсановую подложку.

4. Соединительные швы теплоизоляционного материала следует проклеить монтажным скотчем с верхней стороны.

Этап 2. Укладка инфракрасной отопительной пленки

Для начала необходимо выбрать места для подключения «теплого пола» к электрической сети и оборудовать данную точку для установки терморегулятора. Если возникает необходимость, то обрезаем инфракрасную пленку, следуя линиям отреза.

Инфракрасная пленка укладывается прямо на слой теплоизоляционного материала и фиксируется при помощи скотча. При этом поверхность с токопроводящими медными лентами укладывается вниз.

К инфракрасной пленке снизу прикрепляется датчик температуры и заклеивается монтажным скотчем.

На следующем шаге необходимо выполнить подключение к электрической сети. Отдельные полосы инфракрасной пленки параллельно подключаются к терморегулятору, при подключении к терморегулятору внимательно изучите инструкцию. Соединения токопроводящих медных лент с силовыми проводами фиксируются контактными зажимами и изолируется битумной изоляцией

Места соединений необходимо уложить в заранее подготовленные углубления в подложке и зафиксировать скотчем. Важно следить за тем, чтобы места соединений не соприкасались с нагревательными элементами. Далее необходимо отключить напряжение и подключить требуемые провода, руководствуясь схемой, к терморегулятору.

Перед укладкой ламината необходимо убедится в работоспособности теплого пола. Теплый пол следует подключить к электрической сети с напряжением в 220 В, терморегулятор устанавливается в среднее положение и включается обогрев на 15…20 минут. Если все функционирует правильно, то на поверхность инфракрасной пленки укладывается слой пароизоляционного материала, далее можно приступать к укладке ламината.

 

 

Монтаж инфракрасного теплого пола под плитку

Инфракрасный электрический пол представляет из себя нагревательные карбоновые элементы, упакованные методом горячего ламинирования между двумя листами полиэстеровой плёнки. В электрическую схему входят также контакты, медные токоведущие шины. Терморегулятор и датчики температуры в комплект, обычно, не включены. Их надо докупать самостоятельно.

По сути, инфракрасный подогрев пола – это более удобный в монтаже и эксплуатации аналог обычного кабельного электрического теплого пола.

Инфракрасный теплый пол под плитку

Монтаж инфракрасного теплого пола имеет много общего с установкой кабельного пола, и осуществлять его также лучше под керамическую плитку – ввиду ее хорошей теплопроводности. Если вы приобрели теплый пол инфракрасный пленочный, монтаж своими силами не составит особого труда.

Укладка термоизоляционной отражающей плёнки

Но все-таки, в виду того, что это электропотребляющее устройство, работающее под напряжением, установка его требует специальных навыков и знаний, и лучше доверить ее профессионалам. Далее мы приведем лишь общий порядок и описание основных этапов работ установки инфракрасного теплого пола.

  1. Демонтаж существующего напольного покрытия, зачистка и выравнивание чернового пола (плиты межэтажного перекрытия). Удалить с чернового пола мусор, собрать пыль пылесосом.
  2. Уложить на черновой пол термоизолятор. Оптимальный вариант – изолон (полиэстеровая плёнка с отражающим покрытием из металлизированного лавсана).
  3. Уложить на термоизолятор инфракрасный теплый пол, под ним не должно оказаться пузырей воздуха, воздушной прослойки. Укладывать надо токоведущими шинами вниз.

Зафиксировать инфракрасный плёночный пол на термоизолирующей плёнке скотчем.

Укладка инфракрасного плёночного пола

Укладка инфракрасных полов должна осуществляться вдоль стен, полосами. Для этого нагревательный мат можно разрезать: производители предусмотрели линии отреза через каждые 25 см.

  1. Установить в удобном месте терморегулятор (чаще всего его крепят к стене поближе к розетке). При помощи контактных клемм и проводов соедините терморегулятор с инфракрасным полом. Изолировать места разреза токоведущей шины (если в ходе выкраивания полос теплого пола она была разрезана). Разместить датчики температуры.

Подключение теплого электрического пола к терморегулятору

После этого этапа следует проверить работоспособность электрической схемы. Если всё в порядке, то можете доделывать инфракрасный пол своими руками: работа для специалистов-электриков закончилась.

  1. Чтобы доделать инфракрасный пол под плитку, его накрывают сверху настилом из СМЛ (стекломагниевый лист) «Премиум» или влагостойким гипсоволоконным листом. Настил надо прикрепить в черновому полу дюбелями, но так, чтобы не повредить нагревательную плёнку (напомним, что она расположена полосами вдоль стен).

Керамическая плитка поверх инфракрасного теплого пола

  1. Кафельную плитку укладывают поверх настила из СМЛ или ГВЛ в обычном порядке. Главные особенности:
    • Расстояние от нагревающей плёнки до поверхности уложенной плитки не должно превышать 3 см – иначе инфракрасный теплый пол будет плохо греть;
    • Включать теплый пол можно только после полного высыхания плиточного клея, оптимально – через 4 недели после завершения укладки.

Монтаж инфракрасного пола под ламинат

Инфракрасный пол под ламинат укладывают также, как и под плитку. Отличия – лишь на завершающем этапе. Например, когда кладут инфракрасный теплый пол под ламинат, то часто вместо листов ГВЛ или СМЛ настилают толстую полиэтиленовую плёнку (главное – не повредить ее при монтаже ламината).

Инфракрасный плёночный пол под ламинат

Еще чаще вместо полиэтилена используют ту подложку, которая идёт в комплекте с ламинатом. Вариант люкс – устройство поверх инфракрасного теплого пола тончайшей цементной стяжки и монтаж поверх нее ламината.

Устраивая инфракрасный теплый пол своими руками, помните, что нельзя:

Закреплять теплоизлучающую плёнку гвоздями, делать в ней отверстия, разрезы кроме линий раскроя;

Укладка инфракрасного теплого пола вокруг лестницы

Укладывать плёнку рядам с печью, камином;

Заниматься монтажом инфракрасного теплого пола при минусовых температурах.

Видео монтажа инфракрасного теплого пола можно посмотреть по адресу:

Ещё одно видео монтажа инфракрасного пола здесь:

http://www.youtube.com/watch?v=Dyx_tStXjjg

Инфракрасный теплый пол под ламинат: монтаж своими руками

Плюсы и минусы инфракрасного теплого пола

Прежде чем принимать решение о монтаже теплого пола на основе ИК-пленки, необходимо разобраться в его положительных и отрицательных качествах.

К достоинствам материала относят:

  • Пленка располагается только в тех местах, которые подлежат обогреву. Тратить энергию на обогрев пространства, занятого мебелью, не придется;
  • Простота монтажа материала позволяет выполнить все работы самостоятельно, что положительно сказывается на общих затратах;
  • ИК-пленка прекрасно выдерживает перепады температуры и может работать даже при минусовых значениях. Эта особенность позволяет использовать ее в загородных домах, не предназначенных для постоянного проживания;
  • Инфракрасные теплые полы допустимо монтировать не только в квартирах, но и в административных зданиях;
  • Тепловые волны, исходящие из смонтированной системы, соответствуют по своим характеристикам солнечным лучам;
  • Выход из строя одного или нескольких элементов не влияет на работу всей системы;
  • Проникновение тепловых волн снизу позволяет равномерно распределить тепло, создавая комфортные условия в помещении;
  • ИК-системы имеют длительный срок службы.

А к недостаткам:

  • Высокие расходы на электроэнергию;
  • При неправильном подборе напольного покрытия, эффект от использования материала может быть существенно снижен.

Конструкция инфракрасного теплого пола

Система ИК теплых полов построена на способности некоторых материалов при нагреве излучать тепловые волны. Это явление основано на электромагнитном излучении, при котором образуются волны длиной до 100 мкм.

Таким излучателем в ИК-пленке является карбоновое покрытие, которое разогревается при прохождении электрического тока по проводящим полосам из меди и серебра, в результате чего происходит нагрев полового покрытия и помещения.

Некоторые лучи имеют возможность проходить сквозь напольное покрытие, а поэтому размещение ИК-пленки под габаритной мебелью запрещено, так как может возникнуть перегрев системы. Производители выпускают ИК-материал с потреблением до 440 Вт/кв.м., но для устройства обогрева под ламинатные полы предельная мощность ограничивается 150 Вт/кв.м.

ИК-пленка выпускается в рулонах различной длины, ширина может варьироваться от 500 до 1000 мм. Для удобства монтажа по всей длине рулона сформированы независимые блоки с местами обрезки с шагом в 200-250 мм.

Инструкция по монтажу инфракрасного теплого пола

Устанавливать ИК-пленку для дальнейшего устройства ламинатного пола рекомендуется в следующей последовательности:

  1. Готовятся необходимые материалы и инструменты.
  2. Планируется расположение полос с учетом дальнейшей эксплуатации помещения.
  3. Готовится основание.
  4. Осуществляется сборка.
  5. Производится подключение к электричеству.
  6. Устанавливается прибор саморегуляции системы.

Материалы и инструменты

В комплект для монтажа теплого пола входят:

  • ИК-пленка;
  • подложка с фольгированной поверхностью;
  • скотч битумный;
  • скотч канцелярский;
  • скотч фольгированный;
  • терморегулятор;
  • соединительные клеммы;
  • провода;
  • датчик температуры;
  • пленка полиэтиленовая.

Потребуются следующие инструменты:

  • нож и ножницы;
  • рулетка;
  • карандаш;
  • плоскогубцы;
  • изолента.

Планирование

До укладки материала рекомендуется нанести будущее расположение мебели на план помещения, так как под тяжелыми предметами ИК-пленка не укладывается. После того, как вы разобрались, где будет находиться крупногабаритная мебель, вычисляют необходимое количество полос ИК-пленки и их длину.

Полученные результаты станут основой для расчета электропотребления всей системы теплого пола. Расчет потребляемой мощности потребуется для выбора подходящего автомата, страхующего систему. На стене выбирают подходящее место для установки терморегулятора и определяются со схемой подключения к общей электросети квартиры.

При расчете длины полос ИК-пленки, следует ориентироваться на отметки, по которым можно выполнять поперечный разрез — обычно они находятся на расстоянии 20 см друг от друга.

Располагать полосы лучше по самой длинной стороне комнаты.

При планировании расположения полос необходимо соблюдать отступы от стен в 200 – 300 мм, а расстояние между соседними полосами не должно быть менее 50 мм.

Подготовка

Перед тем, как укладывать инфракрасный теплый пол под ламинат, необходимо выровнять основание и удалить весь мусор. Подготовка стяжки выполняется с учетом требований для устройства ламинатного покрытия, а, значит, не допускаются перепады более 2-3 мм.

Перед монтажом пленки требуется выполнить следующие действия:

  1. Выровненное основание очищается от мелких фракций и мусора;
  2. Основание застилается фольгированной подложкой. Верхний слой данного материала служит отражающей поверхностью, которая не позволяет уходить теплу в плиту перекрытия;
  3. Стелить подложку необходимо встык. Отдельные полосы подложки соединяют клейкой лентой в единое полотно.

Монтаж

Монтаж инфракрасного теплого пола под ламинат выполняется по следующей технологии:

  • Учитывая длину провода, на стене готовят пространство для крепления терморегулятора. Проводится штробление стены под сетевой кабель и провода питания инфракрасного пола. После проведения работ по установке прибора и монтажа проводки, штробы в стене заделываются гипсовым раствором;
  • ИК-материал нарезается по размеру и укладывается в соответствии с разметкой;
  • Открытые контакты, не используемые для монтажа, необходимо изолировать при помощи битумного скотча;
  • Класть пленку требуется медной полосой к основанию. Чтобы при выполнении работ и эксплуатации не происходило смещение полос, их закрепляют клейкой лентой;
  • В технологические разрезы на токопроводящей полосе вводят специальные клеммы одной стороной, к другой подводят провода и обжимают крепление плоскогубцами. Каждое соединение тщательно изолируется с помощью битумного скотча, который, при подаче электроэнергии, размягчается и плотно охватывает узел, образуя герметичную защиту;

Вставка клеммы.

Обжим клеммы.Изоляция клеммы.

  • Для установки датчика температуры в фольгированном основании устраивается небольшое углубление под сам прибор и кабель. Датчик и подводящий провод закрепляется на подложке скотчем таким образом, чтобы верхняя часть прибора попадала на карбоновую полосу;

Место под термодатчик.Крепление термодатчика.

  • Чтобы при укладке ламелей не возникало проблем из-за неровного основания, все места соединений утапливаются в подложку, для чего делают небольшие углубления для клемм и проводов;
  • Перед укладкой ламината поверхность теплого пола закрывается полиэтиленовой пленкой для обеспечения гидрозащиты. Отдельные полосы крепятся между собой скотчем, образуя единый ковер.

Подключение к сети

Подключение к электроэнергии происходит через УЗО, прямое включение инфракрасной пленки к напряжению 220V запрещено. Для сбора отдельных полос пленки в сеть используют специальные клеммы, под которые предусмотрены места крепления (соединение скрутками запрещено). Каждое соединение необходимо заизолировать с помощью битумного скотча.

Подключение производится согласно схеме, которая идет в комплекте.

Подключение терморегулятора

Установленная система самостоятельно регулируется на основании сигналов, передаваемых терморегулятором, который, в свою очередь, получает информацию от датчика, контролирующего значение температуры.

Для подключения этого прибора производители предусмотрели специальный провод. Изменять длину этого провода не рекомендуется, так как нарушается достоверность передаваемого сигнала.

Схема подключения.

Схема подключения индивидуальна для каждого типа изделия, поэтому при сборе системы своими руками следует руководствоваться инструкцией.

Какой ламинат выбрать для последующей укладки над ИК теплым полом

Укладка ламината на инфракрасный теплый пол происходит в обычном порядке, но во избежание возможных побочных эффектов, рекомендуется подбирать определенные модели напольного покрытия.

Неподходящие по характеристикам ламели быстро изнашиваются, становятся причиной разрыва нагревающейся пленки, а также, в некоторых случаях, начинают выделять опасные для здоровья вещества.

Чтобы в итоге не пришлось полностью все переделывать, при выборе ламината следует придерживаться следующей инструкции:

  1. Начинают выбор с типа замкового соединения. Монтаж ламелей должен производиться исключительно за счет фиксации в распор, без использования клеевых составов. В противном случае, при периодическом нагревании и остывании основания, будет происходить разрыв стыков.
  2. Задача полового покрытия – пропускать тепловые волны в дом, а поэтому, при выборе конкретного типа ламината, рекомендуется подбирать доски с минимальным коэффициентом теплового сопротивления. Соответствующая маркировка наносится на упаковке готовой продукции. Рекомендованные параметры: не более 0,1 кв.м. х °K/Вт.
  3. Толщина доски также имеет значение. На чрезмерно тонких досках, при изменениях температурного режима, будут ломаться замки, а слишком толстые ламели станут препятствием для прохождения тепла в помещение. Для полов с инфракрасным обогревом рекомендуется использовать ламели толщиной не более 9 мм и не менее 8 мм.
  4. Следует помнить, что для производства ламинатных досок используют клеевые составы, в которые входит формальдегид. Это вещество при температурах свыше 27°С начинает испаряться, поэтому при выборе покрытия нужно внимательно изучать характеристики материала. Ламинат класса Е0 и Е1 не выделяет вредных веществ при нагреве.
  5. На прочность полового покрытия влияет его способность сопротивляться поверхностному износу. По этому признаку, для укладки инфракрасного теплого пола под ламинат, рекомендуют применять доски с классом стойкости к износу не менее 3.
  6. При монтаже инфракрасного пленочного теплого пола под ламинат допускается применение не только деревянных ламинатных изделий, но и выполненных из винила, что существенно расширяет список доступных для выбора вариантов.

Следуя приведенным выше советам, можно легко найти и купить ламинат под инфракрасный теплый пол. Как выбрать материал с учетом перечисленных характеристик? Необходимо обратить внимание на обозначения, которые наносятся на упаковочный материал (см. фото ниже).

Видео по теме

Инфракрасный теплый пол, монтаж инфракрасного теплого пола под ламинат и линолеум

Инфракрасный теплый пол можно применять как основное отопление помещения, в исключительных случаях. Но более широкое применение инфракрасный теплый пол нашел для обогрева отдельных участков дома и помещения, или для устройства комфортной зоны с подогретым полом — в детских комнатах, на лоджиях или в санузлах. Толщина и вес нагревательных элементов инфракрасного теплого пола не влияет на конструкцию пола и на его высоту, не дает нагрузки на перекрытие, но требует расчетов и влияет на электрическую часть проекта.

Монтаж инфракрасного теплого пола

Пленочный обогрев является системой отопления, и имеет четко обозначенную область применения, требует определенной технологии монтажа и соблюдений правил эксплуатации.

Подготовка подстилающего слоя под инфракрасный теплый пол

Использование инфракрасных пленок в качестве основной системы обогрева возможно при следующих условиях: обязательны два теплоизолирующих слоя – основа и тепловой экран.

Конструкция пола, подходящая для создания этих двух слоев – это черновой настил пола на лагах, зазоры между которыми заполняют минеральным утеплителем, каменными или минеральными ватами. Возможно выполнение сухой стяжки из керамзита или вермикулита как основного слоя теплоизоляции. В случае, если подстилающий слой под изоляцию – бетонное перекрытие, подходит пенополиуретановая теплоизоляция, способом напыления или из плит. При напылении теплозащитный эффект сильнее. Черновой пол имеет холодные мостики на участках примыкания к стенам в результате конвекции холодного воздуха снизу, поэтому в узлах примыкания по периметру помещения также делают пенополиуретановое напыление. В случае, когда перекрытие из сборных ж/б плит, все щели между плитами заделывают цементно-песчаным раствором.

Все эти конструкции целесообразны при достаточной высоте помещения, когда можно поднимать пол на 60-80 мм. Если такой возможности нет, то инфракрасные пленки применяют только для локального обогрева под напольными покрытиями или коврами.

Тепловой экран под инфракрасный пол

Лучший вариант – применять теплоизоляцию и электроизоляцию под нагревательную систему тех же марок, что и ИФ-пленка. При устройстве экранирующего слоя достигается направленная теплопередача вверх, а потери тепла, уходящего в черновой пол, снижаются до 20%. Материал экрана – фольгированная теплоизоляция на лавсановой подложке. Возможно применение более дешевых металлизированных покрытий с основой из вспененного полиэтилена. Но выбирать материал для теплового экрана стоит не по цене, а по наименьшему показателю теплопроводности. Экономия при устройстве экрана разовая, а снизить расходы на электроэнергию при эксплуатации системы обогрева как правило, рациональнее.

Экранирующая подложка необходима только на тех участках, где запланирована укладка нагревательного контура. Но застилают подложкой всю площадь помещения, чтобы не было перепадов по высоте. Кроме того, подложки на лавсановой или вспененной основе из полиэтилена заменяют амортизирующие подложки под ламинат.

Подложки выпускают листовыми и рулонными, и, укладывая их, невозможно избежать стыков. Эти стыки проклеивают специальными скотчами или алюминиевым скотчем с отражающей поверхностью.

Чтобы повысить пожаро- и электробезопасность, все металлизированные поверхности экранирующего слоя соединяют в контур с помощью полосок алюминиевой фольги, и подсоединяют к защитному проводнику для последующего подключения к дифавтомату защиты.

Укладка инфракрасного теплого пола

ИФ-пленка монтируется по заранее рассчитанному контуру отопления, с обходом малопосещаемых зон, участков, где установлена корпусная мебель, ванны и т. п. стационарные устройства. Если мебель имеет дистанционные опоры, прокладка пленки под такой мебелью допускается.

Пленка укладывается на подложке с интервалом от стен в пределах 50-250 мм. ИФ-пленку возможно нарезать при монтаже в поперечном направлении и стыковать в случаях нехватки длины листа. При стыковке необходимо оставлять зазоры между листами не менее 20-25 мм.

ИФ-пленку запитывают одножильными многопроволочными проводами, имеющими пожаробезопасную изоляцию. Провода обжимают пассатижами, прикладывают к контактным металлическим площадкам и сдавливают. Подключения проводов и контактные шины изолируют битумной пленкой на клеевой основе с обеих сторон.

Температурный датчик может быть установлен под ИФ-пленкой в любом удобном месте. Чтобы установить датчик, в материале подложки вырезается участок нужного размера, и датчик укладывают в образующуюся ячейку. Поверхность должна быть ровной, без перепада высот, и локального давления на элементы соединений от напольного покрытия быть не должно.

Поэтому все выступающие части ИФ-пленки — торцы, участки изоляции подключения провода питания и срезы контактных шин — закладывают в канавки, вырезанные в подложке. Сверху все эти участки проклеивают обычным прозрачным скотчем, для предотвращения возможных сдвигов. Так же фиксируют листы ИФ-пленки по всем стыкам.

Сверху на нагревательную пленку необходимо уложить специальный слой из подложки, которая обеспечит заземление, послужит рассеивающим защитным слоем от электромагнитного излучения по всей площади пола, а также создаст верхнюю контактную основу для корректной работы автомата дифференциальной защиты.

Кроме того, верхняя подложка, укладываемая на ИФ-пленку, защитит ее от истирания. Как эконом-вариант, используют вместо заземляющей подложки обычную полиэтиленовую пленку.

Подключение инфракрасного теплого пола к электропитанию

Нагревательные пленки от разных производителей могут незначительно отличаться по электрической мощности, в пределах 200-240 Вт/м2. Сила тока при данной мощности составит около 1 ампера. Схему подключения системы пленочного обогрева, необходимую мощность, выбор защитного устройства и терморегулятора рассчитывают исходя из этих данных.

Проводящие элементы ИФ-пленки рассчитаны на силу тока не больше 10 А, но в результате устройства контактных соединений при монтаже пропускная способность шлейфа снижается до 7 А. Поэтому существует ограничение на длину укладки цельных полос ИФ -пленки — не больше 10 метров. Общая длина соединяемых шлейфов не должна превышать 7 м. При нарушении этих рекомендаций нагрузка на проводящую систему ИФ-пленки может превысить нормативную, что приведет к быстрому износу пленки.

При выполнении рекомендаций по укладке пленки допустимо подключать блоки проводами ПВ-3 1*1,5 , в этом случае нагрев проводов при максимально возможной нагрузке в 10 А будет минимальный, а срок службы системы обогрева будет долгим. Терморегулятор запитывают кабелем ВВГнг, сечение выбирают, исходя из суммы мощностей зоны управления. Каждый блок подключают отдельно, двумя проводами от ИФ-пленки к соединительным коробкам, находящимся в зоне доступа, или сразу к терморегулятору.

После того, как монтаж ИФ-пленки завершен, систему обогрева включают и проверяют работу всех блоков, если необходимо, калибруют показания температурного датчика. Затем закрепляют терморегулятор, и можно начинать укладку ламината или линолеума.

Укладку ламината делают непосредственно на верхний защитный слой обычным способом. Линолеуму, как мягкому покрытию, требуется дополнительное основание – выравнивание из слоя влагостойкой фанеры толщиной 8 мм. Крепятся листы фанеры на участках, где нет проводящих полосок ИФ-пленки и проводов, то есть в участках, где предусмотрены технологические разрывы.

Нельзя допускать повреждения пленки. Листы фанеры укладывают с компенсационным зазором по периметру стен 10-20 мм, зазоры герметизируют водостойкими герметиками, например, силиконовым. После просушки герметика поверхности пола обеспыливают и грунтуют. После полного высыхания грунтовочного слоя укладывают линолеум.

Все формы дальнего инфракрасного излучения

Лучистое тепло приятно. Есть причина, по которой люди пишут в Твиттере о дремоте на полу или публикуют фотографии своих кошек и собак, отказывающихся покидать комнаты, отапливаемые лучистым теплом. Это просто потрясающе! Это простая часть. Но что это такое и как оно работает? Это немного более технический вопрос, поэтому мы попросили Скотта Розенбаума, менеджера технической поддержки WarmlyYours Radiant Heating, разобрать его.

«Лучистое тепло — это тепло, производимое дальним инфракрасным светом», — объясняет он.Дальний инфракрасный свет — это на самом деле свет в электромагнитном (ЭМ) спектре излучения, который находится за пределами спектра, который могут видеть наши глаза, прямо между видимым светом и микроволнами. Спектр электромагнитного излучения включает в себя все типы света (формы энергии), включая гамма-лучи, рентгеновские лучи, ультрафиолетовый свет, видимый свет, инфракрасный, микроволны и радиоволны, а видимый свет фактически составляет лишь небольшую часть. ЭМ-спектра, добавляет Розенбаум.

Дальний инфракрасный свет является тепловым; пока мы этого не видим, мы можем чувствовать, это.Два любимых примера Розенбаума того, как работает дальний инфракрасный свет, составляющий лучистое тепло, — это: 1) солнце и 2) костер.

«Подумайте об этом. Когда вы подходите к костру, вы ничего не видите, но сразу можете почувствовать тепло на своей коже, подтверждающее наличие лучей», — объясняет он. «И когда вы выходите на улицу на солнце, вы не видите, как солнечные лучи падают на вашу кожу, но вы определенно можете их почувствовать».

Инфракрасные лучи являются направленными.«Вам нужно стоять достаточно близко перед костром или на солнце, когда лучи действительно могут попасть в вашу кожу, чтобы почувствовать тепло», — отмечает он. «Если вы войдете в тень или если кто-то остановится, чтобы поговорить с вами и встанет между вами и костром, вы внезапно заметите, что чувствуете себя круто. Это потому, что лучи блокируются».

Лучистое тепло на самом деле состоит из дальних инфракрасных лучей, которые проходят через воздух и начинают непосредственно согревать вас и предметы в комнате, а не воздух вокруг вас.

Итак, вам может быть интересно, всегда ли лучи должны падать на вас, чтобы почувствовать тепло от лучистого тепла? Розенбаум объясняет, что домовладельцы могут обогревать комнату лучистым теплом, потому что дальние инфракрасные лучи нагревают не только человека, но и все предметы в комнате (стены, пол, мебель). Когда предметы в комнате нагреваются, они, в свою очередь, также излучают тепло, что на самом деле нагревает воздух и повышает температуру в комнате.

«Преимущество в том, что вам не нужно пытаться нагреть комнату так тепло, как обычно, потому что лучи по-прежнему будут попадать в вас и держать вас в тепле, пока вы находитесь в комнате», — говорит Розенбаум.«Это экономит ваши счета за отопление, потому что для нагрева воздуха во всем помещении требуется гораздо больше энергии, чем для нагрева вашей кожи / тела, пока вы находитесь в комнате».

Вернемся к примеру с костром, хотя костер никогда не может нагреть фактический воздух на вашем заднем дворе (все тепло уходит на открытый воздух), он может эффективно согреть вас и обеспечить вам комфорт, пока вы находитесь достаточно близко для По словам Розенбаума, дальние инфракрасные лучи поражают вашу кожу.

По словам Розенбаума, многие домовладельцы сообщают о заметной экономии за счет использования лучистого тепла.«Некоторые сообщают, что они могут снизить температуру на 20-30 процентов, если в комнате есть источник лучистого тепла, по сравнению с тем, что они использовали бы только с альтернативными конвекционными обогревателями», — делится он. Им комфортно в комнате на несколько градусов ниже, потому что лучистое тепло согревает их и предметы в комнате.

«Они не нагревают воздух, который затем выходит из окон и трещин в комнате», — объясняет Розенбаум.

«Чтобы продемонстрировать эффекты нагрева, я буду предлагать клиентам стоять перед панелью лучистого отопления в прохладной комнате», — говорит он.«Температура воздуха не меняется [когда] они стоят перед панелью. Он остается прохладным. Но они будут чувствовать себя очень комфортно».

Для того, чтобы лучи начали проникать и нежно нагревать вашу кожу, требуется несколько минут, — предупреждает он. Нет мгновенного выброса тепла. Однако, по его словам, стабильный и предсказуемый нагрев дальнего инфракрасного излучения является частью привлекательности. В комнате нет холодных карманов. Вам комфортно, куда бы вы ни переезжали.

Итак, можно ли использовать лучистое тепло в качестве единственного источника тепла?

По словам Розенбаума, системы теплого пола WarmlyYours могут быть эффективным первичным источником тепла.Однако успех зависит от нескольких переменных, таких как климат, в котором вы живете, и степень теплоизоляции вашего дома или основных жилых помещений. Учет этих факторов поможет вам определить лучшее решение для отопления вашего уникального дома. Лучше всего начать с калькулятора тепловых потерь WarmlyYours, который поможет вам учесть эти переменные. Этот инструмент позволяет профессионалам, дизайнерам и домовладельцам мгновенно вычислять информацию о потерях тепла и получать индивидуальные рекомендации для удовлетворения конкретных требований к отоплению для каждого проекта.Отсюда вы можете определить, подходит ли ваш дом для лучистого отопления. Когда это происходит, результат — волшебно успокаивающее тепло (просто спросите всех этих кошек и собак!).

«Многие довольные клиенты используют лучистое тепло в качестве основного источника тепла», — говорит Розенбаум.

Источники:

http://science.hq.nasa.gov/kids/imagers/ems/infrared.htmlhttp://www.physicscentral.com/explore/action/infraredlight.cfm
http: // coolcosmos. ipac.caltech.edu/resources/paper_products/print_publication_pdf/IRUback.pdf

Лучистое напольное и настенное отопление

Преимущества лучистого отопления

Эффективное отопление

Лучистое отопление потребляет меньше энергии, чем другие методы отопления, такие как традиционные радиаторы. Радиаторы необходимо нагреть до (149–167 градусов по Фаренгейту / 65–75 градусов Цельсия) для эффективного обогрева комнаты, однако полы с подогревом могут работать при температуре (84 градуса по Фаренгейту / 29 градусов Цельсия или ниже). Однако это зависит от типа напольного покрытия и размера комнаты.

Без холодных точек

Решения Radiant обогревают весь пол или стену, поэтому не будет холодных мест.

Нет обслуживания

Системы лучистого теплого пола не требуют обслуживания. Они рассчитаны на бесперебойную работу около 25-30 лет, что в два раза дольше, чем стандартная печь.

Экономия места

Технология, обеспечивающая лучистое тепло, скрыта от глаз.Нет необходимости в радиаторах, заполняющих ваши комнаты. Держите свое пространство чистым и свободным, чтобы делать с ним все, что вам нравится.,

Работает со всеми типами поверхностей

Теплый пол с подогревом может работать с плиткой и камнем, ковром, деревом, ламинатом и виниловым покрытием.

Подходит ли вам лучистое отопление?

Лучистое отопление обычно не подходит для отопления всего дома; это возможно, но чаще всего домовладельцы устанавливают его в отдельных комнатах, таких как ванная или кухня.Лучистое отопление часто считается дополнительной роскошью, повышающей ваш комфорт. Также стоит учитывать, что лучистое отопление может работать более эффективно в долгосрочной перспективе, хотя первоначальная стоимость установки может быть выше.

Если вы хотите добавить ощущение спа в свою ванную комнату или хотите большего комфорта от обогреваемой кухни, тогда пол с подогревом может быть для вас.

Почему выбирают Hellas Air Temp?

Выбирая Hellas Air Temp для установки или замены лучистого отопления в своем доме или офисе, вы знаете, что имеете дело с техническими специалистами, специально обученными особенностям лучистого отопления.

Этот тип отопления не похож на обычную печь или котел, и его всегда должны выполнять опытные профессионалы.

Hellas Air Temp имеет проверенный опыт работы с сотнями клиентов в округе Норуолк / Фэрфилд с 1978 года. Ознакомьтесь с нашими отзывами в Google.

Установка перекрытия перекрытия | | Теплый пол своими руками

Устройство балок перекрытия

Установка перекрытия на перекрытиях представляет некоторые уникальные проблемы, которых нет в широко открытой и более гибкой среде перекрытия при укладке на горизонтальном уровне.Однако с помощью нескольких рекомендаций эти проблемы можно легко преодолеть. Посмотрите наше видео «Установка тепловых трубок излучающего пола в балки перекрытия» и прочтите эту страницу, чтобы получить полное описание.

Установка типовой балки пола с использованием трубы PEX 7/8 дюйма, 16 дюймов по центру

Во-первых, важно помнить, что обычно компания Radiant Floor предполагает, что все трубки теплообменника, будь то 1/2 ″ PEX или 7/8 ″ PEX, питаются по медным линиям подачи и возврата 3/4 ″. Поскольку мы никогда не знаем, как далеко находится источник тепла от данной зоны, мы указываем необходимое количество трубок для заполнения только этой зоны.Другими словами, пластиковая трубка находится в теплом полу и не обязательно должна идти туда-сюда к водонагревателю или бойлеру.

При этом имейте в виду, что пластиковые трубки PEX можно использовать для ваших линий подачи и возврата, если: 1) вы заказываете дополнительные трубки и 2) в вашей ситуации имеет смысл воспользоваться гибкостью PEX.

Тем не менее, мы рекомендуем использовать медные трубки диаметром не менее 3/4 дюйма для линий подачи и возврата при питании зоны с несколькими контурами pex в и из зонного коллектора.Причина этого заключается в объеме и (потенциальном) напоре, которые создаются, когда эти линии подачи и возврата заблокированы. Например, 3/4 ″ pex (сам по себе) является (по большей части) прекрасным (в зависимости от объема зоны), НО внутренний размер 3/4 ″ pex-адаптера составляет почти 5/8 ″ (намного меньше) и, следовательно, создает сопротивление / напор. Насос зоны может не преодолеть это напорное давление из-за сопротивления, создаваемого уменьшенным выходным объемом адаптера. (Тогда) может возникнуть необходимость в увеличении размера насоса зоны, ИЛИ размер подающей и обратной линий должен быть увеличен до 3/4 дюйма меди, так как это уменьшит эту (потенциальную) проблему.Не стесняйтесь обращаться к техническому специалисту с любыми вопросами.

В некоторых ситуациях имеет смысл использовать трубки PEX для линий подачи и возврата. Фитинг, показанный выше (слева), позволяет установщику запускать несколько излучающих контуров без использования жесткого медного коллектора. На фотографии справа показано сверло с самоподводом, рекомендованное для сверления отверстия диаметром 1 1/2 дюйма в балках.

Примером этого может быть установка в геодезическом куполе или другом сооружении нестандартной формы.Пластиковые трубки легко соответствовали бы радиусу конструкции, следовали бы по кривой и могли бы значительно упростить доставку линий подачи и возврата из точки A в точку B. , стесненные полости балки или любое другое место, где проложить жесткие медные трубы будет очень сложно. Многие используют «гибридный» метод. Это комбинация медных и пластиковых линий подачи и возврата. Наши латунные переходники позволяют переходить с меди на пластик и обратно так часто, как это необходимо.

Например, вы можете начать линию подачи от циркуляционного насоса с медью 3/4 дюйма, легко пробежать двадцать футов, а затем столкнуться с препятствием, которое вы предпочитаете обходить змейкой. Используя латунный переходник, вы превращаетесь в пластик, продвигаетесь вверх, вниз, вокруг и через…. Достигаете зоны, а затем конвертируете обратно в медь. Поскольку латунные переходники предназначены для пайки в любой медный фитинг 3/4 дюйма, всегда легче работать в медном режиме, когда фактически находится в зоне. Это связано с тем, что для большинства зон требуется несколько ровных петель трубок.

Прокладка нескольких петель НКТ в зоне

Если для зоны не требуется 400 футов или меньше труб (300 футов для 1/2 ″ PEX), зона должна быть разбита на даже несколько петель. Под четными мы подразумеваем петли, длина которых составляет примерно 10% друг от друга. Удерживая петли примерно одинаковыми, вы не дадите воде более короткий «путь наименьшего сопротивления», и тепло во всей вашей зоне будет сбалансированным.

Для большинства установок требуется несколько петель трубок в одной зоне.Если зона очень большая и требует, скажем, 1600 футов труб для адекватного покрытия всего пола, то этот пол будет разбит на (8) петли длиной примерно 200 футов, все питаемые общей медной линией 3/4 дюйма. Медная линия действует как коллектор, сначала наполняясь водой, а затем одновременно питая все контуры. Затем вода проходит всего 200 футов, прежде чем попасть в аналогичный медный «возвратный» коллектор диаметром 3/4 дюйма и вернуться к источнику тепла. Вот почему проще всего использовать медь для линий подачи и возврата.

Примечание: Как упоминалось выше, PEX также может использоваться для заголовков. Но ожидайте, что заплатите намного больше за фитинги (тройники PEX дорогие), и само собой разумеется, что паяные соединения предпочтительнее, когда это возможно.

Латунные переходники впаяются в медный тройник 3/4 ″ в начале каждой петли PEX. По сути, вы строите коллектор на ходу. Ваш медный коллектор поступает в зону, адаптируется к PEX в начале первого контура, изгибается вверх и вниз по «X» отсекам для балок, а затем завершается с помощью другого адаптера в медном возвратном коллекторе.Затем подающий коллектор переносится от первого медного тройника к началу контура номер два, устанавливается еще один тройник, используется другой адаптер, и процесс повторяется. На последней петле вместо тройника используется отвод 3/4 дюйма под 90 градусов.

И, чтобы продвинуть вышеупомянутый пример на шаг дальше, имейте в виду, что было бы приемлемо установить те же 1600 футов трубы, что и (4) 400-футовые петли. Это потому, что с трубкой диаметром 7/8 дюйма горячая вода может пройти 400 футов, прежде чем станет слишком холодной, чтобы принести вам пользу.Однако, как правило, предпочтительнее запускать несколько более коротких циклов, чем меньшее количество более длинных.

Если ваша установка требует нескольких контуров трубок в одной зоне, шаровой клапан должен быть установлен на стороне подачи каждого контура. Эти клапаны пригодятся при заполнении системы и выпуске воздуха из недавно установленной трубки. Воздух в трубке может оказывать небольшое сопротивление, особенно в большой зоне, и легче продувать зону по одному контуру за раз.Кроме того, если логистика вашей ситуации требует, чтобы ваши несколько контуров имели неодинаковую длину, то есть не в пределах 10% друг от друга по длине, тогда шаровые краны можно использовать для «уравновешивания» потока между контурами. Это не лучший способ сбалансировать зону, но иногда он необходим.

Точная длина петель в рамках приведенных выше рекомендаций определяется ситуацией. Компания Radiant Floor обычно поставляет 200-футовые рулоны труб для перекрытий перекрытий.Это связано с тем, что обращение с рулоном более 200 футов может стать проблемой. Но после измерения длины ваших конкретных пролетов балок вы можете определить, что идеальная длина петли для вашей установки будет, скажем, 270 футов. В таком случае вполне допустимо добавлять 70 футов к каждому 200-футовому рулону. При установке балок перекрытия используйте столько муфт, сколько вам нужно… не только для добавления к рулону, но и для облегчения работы по прокладке труб.

Продевание трубки через балки

Первое, что нужно понять на этом этапе установки, — это то, что это не работа одного человека.Многие люди звонили нам, утверждая, что установили трубки сами, и мы никогда не ставили под сомнение их честность… только их здравомыслие. Запуск нескольких 200-футовых петель из 7/8-дюймовых трубок не должен быть кошмаром, так зачем же объединять их в одну? Как и на большинстве этапов строительства, над этим проектом должны работать два человека.

«Королева балок»

Что ж, как будто чтобы доказать исключение из всех правил, Шарлин Вуд, 67 лет, из Ньюпорта, Вермонт, самостоятельно установила 7/8 ″ Pex в эти балки пола, а затем приступила к установке пластин рассеивания тепла.Конечно, мы по-прежнему рекомендуем, чтобы любая установка Pex выполнялась двумя людьми, но Шарлин является примером необычайного таланта и решимости наших многочисленных клиентов, которые делают это своими руками.

Начните с сверления балок самым простым способом. Лучше всего использовать сверло под прямым углом 1/2 ″, как и сверло с автоматической подачей. Милуоки — отличный. Используйте их размер 1 1/2 дюйма.

Просверлите отверстие на дюйм или два ниже основания чернового пола … что угодно, что позволит вам легко сверлить отверстия.Помните, вы, вероятно, будете сверлить много из них. Теперь определите, какой «образец» участка трубопровода вы хотите использовать. Бег вверх и вниз по каждому отсеку с балками отлично работает с центральными балками диаметром 16 дюймов. Но если у вас 12 дюймов по центру, вы можете попробовать метод «пропустить балку», показанный ниже и в нашем руководстве по установке. Этот метод дает трубке максимально широкий изгиб, а в качестве дополнительного бонуса линии подачи и возврата окажутся на одной стороне комнаты.

Метод пропуска балок для установки трубопровода

Схема метода пропуска балок

Этот метод позволяет делать плавные широкие повороты, пропуская все остальные балки, а затем возвращаясь через пропущенные участки в одну непрерывную петлю, что устраняет необходимость в отдельном проходе.

Если ваши балки имеют 24 дюйма по центру, проложите одну длину трубы на каждую секцию балок, затем поверните назад и повторите процесс. В итоге вы установите пол с очень высокими эксплуатационными характеристиками, с двумя отрезками труб на каждый отсек, примерно 12 дюймов по центру.

Какой бы метод ни был выбран, наилучшие результаты будут получены при использовании трубки при комнатной температуре или выше. Как и в случае со всеми пластиками, чем холоднее трубка, тем менее гибкой она будет. Тем не менее, когда два человека работают примерно в противоположных концах комнаты, трубка достаточно гибкая, чтобы ее можно было пропустить через балки на несколько футов за раз, медленно, один рабочий кормит, а другой ослабляет.

Трубка может лежать на полу между двумя установщиками. Это помогает противодействовать вращению рулона, чтобы ослабить его и помочь трубке легко развернуться с рулона. Всегда берите трубку из снаружи рулона, а не изнутри.

Затем, медленно пропуская трубку через балки, позвольте ей «собраться» под отсеком для балок перед вами. 15 или 20 футов трубки могут начать свертываться по направлению к полу, когда вы проталкиваете ее перед собой. Но не собирайте слишком много.Дайте себе ровно столько, чтобы пройти через отверстие в следующей балке, затем накормите еще немного, соберите еще немного и постепенно прокладывайте себе путь через бухты. Кормите, принимайте слабину, кормите, принимайте слабину…. Медленно и неуклонно. Таким образом, два или три человека могут пробежать сотни футов трубы за день.

Помните, что на трубах нанесена маркировка через каждые пять футов, и 200-футовый рулон можно разрезать на два отрезка по 100 футов. Итак, выясните, сколько заливов охватит 100 футов, затем начните с центра и проденьте трубку на 50 футов в каждом направлении.

Другой метод заключается в измерении длины пролетов балок и подсчете количества отсеков, необходимых для использования 200-футового. рулон. Например, если число равно шести, начните с пролета номер три и протяните 100 футов НКТ в одном направлении и 100 футов в противоположном направлении.

Наши латунные переходники тоже могут пригодиться. Если вы обнаружите, что вам нужно сделать очень крутой изгиб, пройти вверх, над или под каким-либо препятствием … или вам просто нужно пройти через двойные балки или толстые балки … тогда используйте переходник для кратковременного преобразования в медную трубу.В медном режиме вы можете использовать 90 или 45, чтобы легко обходить проблемные зоны. Другой адаптер переведет вас обратно на трубку PEX и вперед. В любом случае, если вы окажетесь в ситуации, когда трубка перекручивается, многократно перекручивается или просто больше не питается… отрежьте и соедините позже.

Переходник из PEX на медь для коренных изгибов

Можно сделать радикальные изгибы с помощью адаптера PEX для временного преобразования в медь

Перегибы, кстати, можно исправить с помощью теплового пистолета, который почти волшебным образом вернет трубке ее первоначальную форму.Процесс сшивания дает трубке своего рода молекулярную память. Как только поврежденная трубка нагреется, изгиб постепенно исчезнет.

Если у вас нет теплового пистолета, трубку часто можно отремонтировать, используя тряпку и пару канальных замков, чтобы закруглить изгиб, а затем установить пару алюминиевых пластин рассеивания тепла по обе стороны от нее. Это обеспечит надежную фиксацию трубки вокруг места перегиба и предотвратит ее любое изгибание. Очень сильно изогнутые трубы, которые, по-видимому, утратили структурную целостность, должны быть отрезаны и отремонтированы с помощью муфты.

Когда все трубки PEX будут пропущены через балки, проложите медную подводящую линию до начала каждой петли и подключите адаптеры, как описано ранее. Сделайте то же самое с обратной линией. Вы обнаружите, что после установки трубок PEX становится очень очевидным, как лучше всего управлять линиями подачи и возврата. Кроме того, никогда не помешает промаркировать подводящий и возвратный концы трубки куском малярной ленты.

Итак, если все подводящие концы ваших петель начинаются с одной и той же стороны комнаты, просто пропустите медь туда и подключите… то же самое с обратным.Если некоторые из начал петли находятся на одном конце комнаты, а некоторые — на противоположном, то проложите главный ствол из меди 3/4 дюйма где-нибудь около середины и оттуда ответьте к трубке PEX.

Очевидно, что самый простой способ прокладки медных линий подачи и возврата — по нижней части балок перекрытия, если они должны проходить перпендикулярно к отсекам балок. Если они движутся параллельно балкам, вы можете поставить их достаточно близко к черновому полу, без теплоизоляции, и использовать больше тепла для пола.

И, говоря об изоляции, если у вас нет причин для обогрева помещения на пути к зоне, все линии подачи и возврата должны быть изолированы с помощью пенопластовой изоляции. Если они проходят через неизолированное пространство для лазания или в любом другом месте, где может быть очень холодно, они также должны иметь дополнительную обертку из стекловолокна.

Начнем с ответа на самый простой вопрос. Что такое заголовок?

Коллектор — это просто тип коллектора.Вы могли бы назвать его вытянутым коллектором, если хотите, но важно различать стандартный коллектор и коллектор для теплых полов, потому что они используются по-разному.

Стандартный коллектор (он же плиточный коллектор) представляет собой плотную конфигурацию соединений подачи и возврата. Если у вас есть «3-контурный» коллектор, у вас будет коллектор с (6) общими соединениями, (3) подачей и (3) возвратом, все они собраны в плотный небольшой корпус, который может иметь ширину около 18 дюймов.

На практике одна линия подачи входит в стандартный коллектор и разделяется на три ветви. Затем жидкость протекает через (3) контуры в полу и снова возвращается в коллектор, где снова сливается в одну обратную линию и течет обратно к источнику тепла.

Этот тип коллектора хорошо работает в плоских приложениях, потому что установщик работает в широко открытой среде. Коллектор может располагаться в одном углу плиты, и все соединения могут начинаться и заканчиваться в этом одном месте, потому что, когда вы заканчиваете рулон, вы можете просто вернуться к коллектору и выполнить соединение.

С устройством перекрытия балки не все так просто. Если вы установите стандартный коллектор в одном углу комнаты, и все ваши многоконтурные соединения должны начинаться и заканчиваться в этом углу, вы вскоре обнаружите, что у вас громоздкий кластер линий подачи и возврата, идущих туда и обратно. коллектор. Это потому, что балки пола постоянно уводят вас все дальше и дальше от этого угла. В отличие от установки на плите, вы не можете просто пройти по полу с последними тридцатью футами труб и подключить их к электросети.

Вот почему удлиненный коллектор или коллектор лучше всего. Проще и чище подвести линии подачи и возврата к трубопроводу…. вместо того, чтобы прокладывать трубы от брусьев взад и вперед к одному месту в комнате.

Пример двухконтурного заголовка

На фотографии (слева) показаны два очень простых, двухконтурных, устанавливаемых на месте разъема — сторона подачи и сторона возврата. В этом примере у установщика было достаточно места на стене подсобного помещения, поэтому он установил там коллекторы подачи и возврата.Он мог бы установить их вдоль дна балок или даже внутри самой полости балки. Все зависит от ситуации. Помните также, что кусок медной трубы 3/4 дюйма, использованный для создания коллектора, мог быть намного длиннее и мог обеспечить гораздо больше цепей.

Короче говоря, коллекторы обеспечивают высокий уровень гибкости при установке любой балки перекрытия.

Например, предположим, что весь ваш первый этаж представляет собой единую зону, и для этой зоны требуется 1200 футов труб, чтобы покрыть всю площадь.Ну, вы не можете пропустить воду через одну трубку длиной 1200 футов … .. если, конечно, вы не хотите, чтобы ледяная вода выступала на другом конце. Таким образом, необходимо разбить 1200 футов трубопровода на меньшие равные цепи. Для этого примера предположим, что вы разделили зону на (3) 400 ‘контуров (или (6) 200’ контуров, если на то пошло). Если вы представите себе медную трубу диаметром 3/4 дюйма, идущую к вашей зоне, и затем представьте, что отводите ту же трубу (6) раз для подачи питания в каждый из (6) контуров, то вы только что визуализировали увеличенную версию заголовок, показанный выше.Обратная сторона устроена аналогично. Все концы ваших (6) цепей заканчиваются общим заголовком возврата. В большинстве случаев эти коллекторы устанавливаются перпендикулярно балкам перекрытия, и вы можете отстегивать их там, где это необходимо.

Три основных типа заголовков

Первый тип, мы назовем «Параллельный заголовок» . Если по какой-либо причине вы решите, что ваша ситуация лучше всего работает с заголовками «поставка» и «возврат» на одной стороне комнаты, то параллельный заголовок для вас.Обе медные трубы проложены бок о бок, и вы соединяете с подающего коллектора в начале каждого контура, и вы присоединяете к возвратному коллектору в конце каждого контура. (см. рисунок ниже)

Схема параллельного заголовка

Второй тип заголовка называется «Противоположный заголовок» . С помощью этого метода установщик монтирует коллектор поставки с одной стороны комнаты, а коллектор возврата — с другой. Этот метод не лучше и не хуже, чем Parallel Header.Какой метод используется, зависит строго от длины цепи, необходимой для вашей конкретной установки. Если длина ваших отсеков для балок такова, что ваши цепи естественно заканчиваются на стороне комнаты, противоположной тому, где начинаются ваши запасы, тогда используйте этот тип заголовка.

Схема противоположного коллектора

Случайный заголовок

Последний метод называется «Случайный заголовок» . Он часто используется в ситуациях, когда распространены неровные брусья балок.На ум приходит геодезический купол или, возможно, дом с множеством приспособлений и неровностей на плане. В подобных случаях вы просто решаете, какой длины должны быть ваши цепи… .. и позволяете подводящему и обратному концевикам падать, где бы они ни находились.

Схема случайного заголовка

Я дам вам реальный пример этого метода.

У вас есть первый этаж общей площадью 725 кв. Футов. Для прокладки трубок PEX 7/8 ″ с центрами 16 ″ потребуется примерно 543 фута труб. Это даст вам (2) цепи длиной 271 фут.каждый. Вы можете взять 300-футовый рулон трубок и продеть его через балки, пока не дойдете до отметки 271 ′ на трубке (через каждые пять футов нанесены индикаторы длины, показывающие, сколько трубок было использовано). Закончите кругооборот в этой точке и начните следующий бросок в том же месте. К тому времени, когда вы достигнете отметки 271 ‘во втором броске, вы пройдете всю зону.

Конечно, альтернативным методом было бы использование 200-футового рулона и муфты. Установите весь рулон, затем добавьте 71 фут.из другого рулона. Преимущество состоит в том, что легче работать с более коротким рулоном. Если вы устанавливаете трубы осенью или зимой, а на рабочем месте холодно, 200-футовый рулон будет легче продеть через балки, чем 300-футовый рулон из-за меньшей гибкости трубы при более низких температурах.

Естественно, этот метод может быть применен к любому количеству цепей и любой длине цепи (при условии, что ваши цепи остаются ниже отметки 400 футов).

Кроме того, с «Случайный заголовок» он помогает не забывать об идее «баланса».Другими словами, поскольку точки подачи и возврата разбросаны в некоторой степени случайным образом по отсекам балок, вы захотите подвести основные стволы как ваших коллекторов подачи, так и возвратных коллекторов в зону из некоторого относительно центрального места (см. Рисунок). Таким образом, когда вы разветвляетесь, чтобы соединить различные «начала» и «окончания» ваших линий подачи и возврата, вы сохраните «ноги» заголовка в некоторой степени равномерной по длине.

Алюминиевые пластины рассеивания тепла

После того, как труба будет продета через балки пола, алюминиевые пластины рассеивания тепла используются для прикрепления ее к нижней части чернового пола.Пластины изготовлены из чистого, термообработанного алюминия, что делает их очень пластичными, как свинцовая пленка. Они бесшумны, их легко прикрепить к черному полу, и они не только надежно удерживают трубы, но также отводят тепло и равномерно распределяют тепло по черновому полу. Вот почему очень важен тесный контакт между пластиной и трубкой. Недавние исследования Американского общества инженеров по отоплению, охлаждению и кондиционированию воздуха (ASHREA), проведенные в Университете Канзаса, пришли к выводу, что пластины рассеивания тепла увеличивают передачу тепла в занимаемое пространство почти на 175%.

Покрытие радиуса

Хотя это не является строго необходимым для большинства установок, но если вы заинтересованы в покрытии каждого возможного дюйма излучающих труб диффузионными пластинами, компания Radiant Floor предлагает специальную легкую пластину из чистого алюминия треугольной формы. Эти «радиусные» пластины легко прижимаются к трубке, например:

Радиусные пластины формируются вручную и скрепляются скобами на ходу

Эта сборка перевернута, но она демонстрирует, как треугольники следуют по дуге вокруг радиуса.

Используйте пластины, чтобы прикрепить трубку PEX к основанию черного пола. Как правило, пластины скрепляются скобами ¼ ”. Десять или двенадцать скоб на тарелку подойдут. Кроме того, старайтесь держать пластины на расстоянии примерно 4 дюйма от любых переходников или муфт. Под ванными комнатами, Pergo и в местах с ковровым покрытием непрерывно прокладывайте пластины по трубам (конечно, не по изгибам). Под плиткой, шифером и деревом разместите пластины через каждые 8 ​​дюймов (, чтобы получить более подробную информацию о лучистом тепле с деревянными полами, см. Ссылку ).

Просто имейте в виду, что непрерывная прокладка плит под любым полом улучшает общую производительность системы. Если ваша цель — максимальное рассеивание тепла и очень отзывчивый пол, то слишком много пластин не бывает.

Инфракрасное фото диффузионной пластины в действии

Установка радиационного барьера

Для всех перекрытий перекрытий требуется отражающий барьер, который направляет инфракрасный спектр тепла вверх в сторону излучающего пола.Простая алюминиевая фольга, купленная в супермаркете, подойдет, но из-за ее склонности к разрыву и проколам она непригодна для строительных целей. Для простоты установки мы рекомендуем отражающий барьер из чистого алюминия, изготовленный со встроенными поли-волокнами для защиты от разрывов. Плиты из стекловолокна или жесткого пенопласта, облицованные фольгой, тоже превосходны, потому что они не только отражают инфракрасное тепло, но также добавляют термическое сопротивление и способствуют распространению тепла на пол. При установке излучающего отражающего барьера всегда оставляйте не менее 1 ″ воздушного пространства между трубкой и отражающей пленкой.

При установке излучающего отражающего барьера всегда оставляйте не менее 1 ″ воздушного пространства между трубкой и отражающей пленкой.

Если теплый пол находится над неотапливаемым подвалом или подвальным помещением, необходима изоляция, чтобы изолировать теплый пол от более холодного пространства внизу.

К сожалению, стекловолокно, облицованное фольгой, часто бывает очень трудно найти, а жесткая изоляция, облицованная фольгой, очень дорога. В результате большинство людей изолируют нижнюю часть излучающей трубки следующим образом.

Опустите и установите излучающий барьер, по крайней мере, на 1 дюйм ниже трубы, но в идеале не ниже 2 дюймов. Заполните остальную часть перекрытия балок изоляцией. Лучше всего это сделать следующим образом:

Поскольку рулоны излучающего барьера имеют ширину 48 дюймов, вы сэкономите много времени, зажав весь рулон в тисках или повесив его на козлы, сделав отметку 16 дюймов и разрезав весь рулон с помощью пилы или пилы. . Сделайте это дважды, и вы получите три предварительно нарезанных секции шириной 16 дюймов каждая.Затем просто раскатайте отражающий барьер, чтобы он соответствовал длине вашей стекловолоконной изоляции, положите его поверх стекловолокна так, чтобы блестящая поверхность была обращена к излучающей трубе, затем протолкните изоляционный и барьерный материал вверх в полость балки. Только будьте осторожны, чтобы не прижать барьер прямо к трубке. Воздушное пространство размером 1 дюйм очень важно.

При спуске имеет смысл удвоить нормальное количество трубок

В ситуациях с «удовлетворительной» или «плохой» изоляцией может потребоваться прокладка в два раза большего количества трубок.Другими словами, в случае 7/8 ″ PEX (обычно прокладка 16 ″ по центру) вместо прокладки одной длины трубы на каждый отсек балок установщик выполнит две. Цель состоит в том, чтобы в конечном итоге установить PEX на 8 дюймов по центру, но без превышения радиуса изгиба трубки.

Решение простое. Протяните трубу, как обычно… на одну длину на каждую секцию балок… затем вернитесь к началу и повторите процесс. Очевидно, вы будете просверливать второй набор отверстий диаметром 1 1/2 дюйма, довольно близко к тем, которые вы уже просверлили (или, возможно, вы будете использовать одно отверстие большего размера), а затем пропустите вторую партию трубок.Во втором прогоне вы, конечно, захотите имитировать первый прогон как можно точнее с точки зрения длины, потому что на самом деле вы не делаете ничего, кроме добавления дополнительных цепей, и все цепи должны быть близки к одинаковой длине.

При спуске второй партии трубок стремитесь к расстоянию между центрами примерно 8 дюймов, но не беспокойтесь, если вам придется пересекать первую партию трубок в некоторых местах, чтобы добиться этого. Прикрепите трубку к черному полу, как обычно, используя алюминиевые пластины рассеивания тепла.

Конечно, само собой разумеется, что улучшение изоляционных свойств конструкции обычно предпочтительнее, чем удвоение количества труб. Но иногда это просто непрактично в старых зданиях. Кроме того, даже современные, в остальном хорошо изолированные конструкции иногда требуют двойных труб в определенных зонах. Поскольку многие люди пользуются захватывающими видами, проектируя большие оконные стены и высокие соборные потолки, они создают столь же впечатляющие потери тепла в этих областях.Но, опять же, никто не предлагает нам всем жить в пещерах с высоким значением R. Просто спроектируйте излучающую систему с учетом потерь тепла в здании, и вы сможете насладиться всеми преимуществами света, простора и комфорта.

Двойной проход 7/8 ″ PEX в 16 ″ на центральной балке пролета

Установка радиационных трубок в несущие фермы

Иногда необходимо или желательно использовать фермы вместо стандартных балок перекрытия. Если эти фермы устанавливаются над существующим потолком, где доступ снизу невозможен, то трубку можно прикрепить к верхнему краю фермы, как показано на фотографии ниже.

Фермы

настолько открыты, что прокладка 7/8 ″ PEX через отсеки становится очень простой задачей.

Алюминиевые пластины рассеивания тепла проходят термообработку, чтобы сделать их очень пластичными, как свинцовая пленка. Они легко принимают любую форму и, в отличие от алюминиевых профилей, не возвращаются к своей первоначальной форме. Это делает их идеальными для многих нетрадиционных систем излучающих труб. В этом случае они прикрепляют трубку к верхнему краю фермы, заворачивают под нижнюю кромку, где они надежно скреплены скобами, затем сгибают ее над верхней частью фермы, где они позже будут непосредственно контактировать с черным полом.

С помощью пластинчатого инструмента, предоставленного Radiant Floor Company, пластина рассеивания тепла формируется со смещением канала трубки на три дюйма от края. Это обеспечивает выступ для крепления скоб вдоль нижнего края фермы, опору для трубы и все же позволяет большей части плиты покрывать верх фермы и передавать тепло непосредственно основанию пола.

Поскольку трубы в этом типе применения, по необходимости, устанавливаются перед законченным деревянным полом, очень важно прикрепить меловые линии к черновому полу во время его укладки .Мелом обозначен точный центр фермы, так что позже, когда древесина будет прибита гвоздями, все гвозди для пола будут следовать за меловой линией и не касаться трубы.

Эти 9-дюймовые фермы изолированы от пола ниже 6-дюймовым стекловолокном, покрытым слоем светоотражающего барьера. Это гарантирует, что лучистое тепло будет проникать в недавно отремонтированную главную спальню.

эффективных макетов | Superior Radiant Products

Правила эффективных инфракрасных схем

Введение

С тех пор, как пещерный человек скорчился над своим огнем в своей пещере, чтобы согреться, человек продолжал свои поиски, чтобы улучшить комфорт своего окружения.Сегодня существует множество методов обогрева, позволяющих подогреть или охладить пространство здания, в котором мы находимся, на основе тех же старых фундаментальных законов теплопередачи, которые перемещают тепло от источника тепла в пространство тела.

В помещениях зданий тепло передается за счет конвекции или излучения. Печи, крышные обогреватели или воздухонагреватели и вращение воздуха являются примерами конвективной теплопередачи. Инфракрасное тепло представляет собой лучистую теплопередачу и обычно достигается с помощью газовых трубчатых нагревателей низкой интенсивности или нагревателей высокой интенсивности с керамической поверхностью открытого пламени.

Преимущества систем теплого воздуха: централизованный источник тепла и гибкость в подаче теплого воздуха точно туда, где это необходимо. Кроме того, в систему воздуховодов можно легко встроить оборудование для кондиционирования воздуха. Некоторыми недостатками являются: шум, расслоение, циркуляция пыли и эксплуатационные расходы на верхний предел, особенно в более крупных конструкциях «коробчатого типа».

Инфракрасное излучение устраняет большинство этих недостатков, но от него часто отказываются, поскольку отсутствие надлежащей практики компоновки привело к плохому распределению тепла.

К счастью, наше понимание того, как работает инфракрасное излучение, и некоторые технические усовершенствования в оборудовании делают инфракрасное тепло низкой интенсивности предпочтительным вариантом для обогрева промышленных зданий, обеспечивая комфорт и экономичность.

Инфракрасные обогреватели согревают людей с помощью прямых и вторичных тепловых механизмов. Обогреватель вырабатывает инфракрасную энергию, которая излучается на людей и предметы, первые поглощают энергию и напрямую преобразуют ее в тепло тела, как будто нагреваются солнцем.Лучистая энергия, падающая на пол, стены и другие объекты в здании, поглощается, и эти объекты, когда они становятся теплее, повторно излучают тепловую энергию. Этот механизм аналогичен потеплению атмосферы после того, как Земля поглотила солнечный свет.

Размещение нагревателя — Поместите тепло туда, где холодно

При размещении радиационных трубчатых обогревателей в планировке здания важно понимать, что люди чувствуют себя некомфортно, когда излучаемое ими окружающее излучение не является нейтральным.Там, где есть холодные стены или окна, люди будут ощущать сквозняк, если только эти области не нагреваются до такой степени, что они перестают быть радиаторами внутри помещения.

Здания редко теряют тепло равномерно по всей площади. Двери и окна обычно холоднее, северная сторона здания может быть подвержена большему ветру и т. Д. Когда люди перемещаются внутри здания, они будут ощущать эти более холодные области, потому что излучаемая среда не является нейтральной.

Обычные радиационные трубчатые нагреватели имеют горячий и более холодный конец, что часто считается недостатком для достижения равномерного распределения тепла.Тем не менее, сочетание более горячего конца обогревателя с более холодными участками здания приведет к более прямому излучению на стены, пол и людей, где наблюдается наибольшая потеря тепла, сглаживая распределение тепла.


Правило № 1:

Установите обогреватель концом горелки рядом с дверьми или более холодными стенами здания.


Максимальное увеличение тепловой массы

Объекты на пути прямой лучистой энергии от обогревателя поглощают эту энергию и повторно излучают в окружающий воздух.

Различные материалы обладают различной способностью поглощать прямую лучистую энергию. Например, воздух — плохой поглотитель; сталь, дерево и картон — умеренно хорошие поглотители, но бетон — отличный поглотитель инфракрасной энергии. Поскольку большинство строительных конструкций включает бетонный пол, у нас есть идеальная тепловая масса или тепловой «резервуар для хранения». Когда есть избыток тепла, он поглощает и сохраняет. При недостатке тепла (дверь открыта или ночь неестественно холодная) тепловая масса выделяет свое тепло и излучает его другим материалам в помещении.Разработка концепции тепловой массы в схеме лучистого тепла значительно улучшает равномерное распределение температуры и тепла.


Правило № 2:

Установите обогреватель так, чтобы он видел максимальное количество бетонного пола.


Короткие и высокие позиции

Трубчатые инфракрасные обогреватели низкой интенсивности бывают различной мощности, обычно от 50 000 BTUH до 220 000 BTUH с длиной излучателя, рекомендованной производителем для данной мощности.Учитывая общие потери тепла в здании, реакция многих проектировщиков заключается в выборе оборудования, которое будет достаточно длинным, чтобы «покрыть» всю площадь пола — решение, которое не всегда является лучшим.

Все утвержденные радиационные трубчатые обогреватели прошли испытания на минимальную тепловую эффективность, установленную стандартами ANSI, и они требуют, чтобы максимальная температура труб не превышала 1100 ° F плюс температура окружающей среды и температура дымовых газов не превышала 400 ° F плюс температура окружающей среды. Увеличение длины эмиттерной трубки для покрытия снизит температуру дымовых газов, но лишь незначительно увеличит общую мощность излучения, поскольку выход инфракрасного излучения является функцией температуры в четвертой степени.Как правило, кусок эмиттерной трубки диаметром десять футов и четыре дюйма при температуре 250 ° F выделяет около 5000 BTUH тепловой энергии, почти вся из которых просто поднимается до потолка.

Еще одним негативным аспектом увеличения длины эмиттерной трубки является риск достижения точки росы дымовых газов, при которой образуется кислый конденсат, который может привести к преждевременному повреждению из-за коррозии.

Кроме того, растягивание нагревателя и еще большее понижение температуры на концах дымохода приводит к увеличению разницы температур между концами и уменьшению ощущаемого комфорта людей.

Настаивая на полном освещении площади пола, не учитывается способность бетонной массы пола выравнивать тепловое повторное выделение, и не учитывается, что существует некоторое рассеяние прямых инфракрасных лучей.

В свете вышеизложенного важно повесить обогреватели как можно выше, чтобы максимизировать размер излучаемого пятна на полу, помня, что прямая инфракрасная энергия, которая попадает высоко на внешние стены, обычно является потерянной энергией.Чтобы избежать этого, переместите обогреватель ближе к центру здания.


Правило № 3:

Если скорость и другие критерии эффективности равны, выбирайте обогреватели короче, чем длиннее, и подвешивайте их как можно выше. Это максимизирует окупаемость капитальных затрат и продлит срок службы оборудования без снижения эффективности или производительности.


Максимальная эффективность излучения

Как указывалось ранее, все одобренные инфракрасные лучистые обогреватели соответствуют одним и тем же критериям минимального теплового КПД, и хотя этот КПД можно повысить за счет увеличения длины излучателя, любое улучшение производительности в лучшем случае незначительно и перевешивается отрицательными факторами.Действительно, тепловой КПД — это неверный метод измерения производительности инфракрасного обогревателя, когда действительно имеет значение; «сколько энергии достигает этажа и людей по отношению к израсходованному топливу?» То есть какова эффективность излучения обогревателя?

К сожалению, на этот вопрос нет однозначного ответа. Физическая конфигурация трубчатых нагревателей низкой интенсивности не поддается стандартизированному методу измерения эффективности излучения. Даже методика, используемая для обогревателей высокой интенсивности, в значительной степени несовершенна.Некоторые аналогии, основанные на здравом смысле, могут помочь нам понять факторы, которые увеличивают эффективность излучения обогревателя, не обязательно определяя фактическое числовое значение. Недавний инцидент поможет нашему пониманию.

Производитель A был обеспокоен тем, что производитель B продвигается на рынок, и поэтому он взял на себя обязательство сравнить два конкурирующих нагревателя на своем испытательном стенде. Из двух нагревателей A имел немного более высокую производительность и чуть более высокий тепловой КПД.Утеплители были одинаковой длины. Каждый из нагревателей работал в течение одного и того же периода, и было отмечено повышение температуры на сетке пола. Вопреки первоначальным ожиданиям, обогреватель B нагревает пол больше, чем обогреватель A, и тепло на полу — это, с практической точки зрения, единственное, что беспокоит пользователя.

При рассмотрении двух единиц оборудования было установлено, что единственное важное различие между двумя нагревателями, которое могло повлиять на эти результаты, — это конструкция отражателя.Нагреватель B был оборудован торцевыми заглушками отражателя и многогранным алюминиевым рефлектором с глубокой тарелкой, в то время как нагреватель A имел гораздо более мелкую и очень простую конструкцию «цилиндрический».

Результаты становятся еще более очевидными, когда сформулирована нелепая гипотеза и дан ответ на нее.

Все обогреватели имеют круглые излучатели (обычно диаметром 4 дюйма), а энергия инфракрасного излучения излучается радиально.

Насколько эффективен обогреватель без отражателя? Очевидно, что вся лучистая мощность, не достигающая пола, обычно не способствует обогреву помещения, поэтому около 30%.Насколько эффективным был бы обогреватель, если бы он был оснащен идеально параболическим отражателем, который фокусировал и отражал ВСЮ излучаемую энергию на пол? Без конвективных потерь 100% излучаемой лучистой энергии достигнет пола и будет способствовать обогреву помещения.

Из приведенных выше аналогий можно сделать очевидный вывод.


Правило № 4:

Чтобы добиться максимальной эффективности излучения, выбирайте глубокие, хорошо спроектированные отражатели, которые плотно отражают максимум излучаемой энергии на пол.Кроме того, торцевые крышки помогают поддерживать температуру эмиттера и снижать конвективные потери.


Согласование тепловой нагрузки

Проектирование любой системы отопления должно начинаться с расчета ожидаемой тепловой нагрузки. Основываясь на конструкции здания, его использовании и местной статистике погоды, формулы ASHRAE довольно точно предсказывают количество тепла, необходимое для поддержания комфорта в помещении. Хотя проектировщики знают, что наиболее эффективная система отопления — это система, которая обеспечивает на постоянной основе тепло, достаточное только для покрытия текущих тепловых потерь, они также признают, что экстремальные погодные условия, выходящие за рамки статистических данных, действительно случаются, и они скорее будут обвинены в превышении размеров, чем в под проклейку.Системы отопления редко работают сверх 75-80% своей максимальной мощности.

Кроме того, плохо известно, что разные методы нагрева по своей сути имеют разную эффективность. Подразумевается, что термический КПД печей и нагревателей обычно находится в пределах 80-85%. Тепловой КПД котла достигает 90%, и эти значения обычно учитываются при расчетах конструкции отопления. Однако эффективность передачи конвекторов / радиаторов и инфракрасных лучистых обогревателей также не понимается и поэтому часто игнорируется.

В расчет теплового КПД оборудования не включается коэффициент, но учитывается коэффициент теплопередачи. Этот фактор обычно дает повышение эффективности на 5-15%. Поэтому для проектирования системы лучистого отопления выполняется типичный расчет градусо-дня по ASHRAE, но мощность соответствующей системы может быть уменьшена на 5-15%.

Нагреватели высокой интенсивности приспособлены больше для точечного обогрева, полагаясь на быстрое восстановление за счет обеспечения высокой степени прямого излучения. Для вентиляции дымовых газов необходимо предусмотреть дополнительное тепло.Поэтому повышенные коэффициенты производительности никогда не превышают 5%. Коэффициенты эффективности оборудования для низкой интенсивности, когда некоторые системы могут достигать тепловой эффективности в диапазоне низких 80%, могут возрасти до 15% и 20%.

Превышение размера системы лучистого отопления редко отрицательно сказывается на самом оборудовании, но более частое включение слишком крупной системы снижает личный комфорт и экономию топлива.


Правило № 5:

Чтобы определить размер излучающей системы низкой интенсивности от Superior Radiant Products, рассчитайте теплопотери здания обычными методами ASHRAE и сопоставьте входную мощность системы с 80-90% от первой.Для максимального комфорта и экономии топлива не увеличивайте мощность системы обогрева.


Новые технологии

В то время как хорошая компоновка позволяет добиться оптимального личного комфорта и максимальной экономии топлива, некоторые недавние инновации в конструкции оборудования позволили еще больше улучшить управление комфортом.

Распространенной жалобой на традиционные инфракрасные обогреватели низкой интенсивности является относительно большая разница в мощности излучения от одного конца к другому. В таких условиях эксплуатации данное оборудование не используется в приложениях, требующих большого количества людей и низких потолков, где это особенно заметно.Этот недостаток был устранен за счет выпуска нагревателей серии L компанией Superior Radiant Products. Изменяя поток воздуха через горелку и используя различные материалы по длине излучателя, отклонение мощности излучения нагревателя сохраняется на уровне менее 15%.

Теоретически идеальные комфортные условия и максимальная экономия топлива достигаются системой отопления, если она точно и непрерывно реагирует на потери тепла в здании. Традиционные системы отопления, в том числе инфракрасные, конечно, этого не делают.Система может работать только при выключенном или максимальном включении и зависит от термостата, который поддерживает нормальную температуру помещения на желаемом уровне.

К сожалению, это неэффективно с двух точек зрения. В весенний и осенний периоды размеры системы явно увеличиваются для соответствия внешним условиям. Для выработки небольшого количества тепла система будет работать с максимальным включением в течение очень коротких периодов времени и выключением в течение длительных периодов времени. При каждом запуске цикла расходуется топливо, чтобы довести оборудование до рабочей температуры, а затем тепловой импульс системы и допуски в пределах термостата заставят систему выходить за пределы установленного значения при каждом цикле.Чем чаще цикл, тем больше топлива расходуется.

Кроме того, этот цикл и условие максимальной мощности горелки при низкой потребности в тепле неудобны для пассажиров.

Сказанное образно описывается диаграммой 1.

Таблица I Максимальные значения для обычных технологий — Вкл. / Выкл.

Двухступенчатые регулируемые нагреватели доступны уже несколько лет и устраняют описанные недостатки. Двухступенчатый термостат сигнализирует нагревателю о том, что он должен работать примерно на 75% от его максимальной мощности, до тех пор, пока нагреватель не сможет справиться с тепловыми потерями в здании, и максимальная мощность горелки не будет подана для включения.График II образно это описывает. Нагреватели с регулируемой производительностью улучшают комфортные условия в межсезонье, а за счет более продолжительной работы в каждом цикле можно достичь некоторой экономии топлива.

Таблица II — Стандартная технология Hi-Lo

Автор:
Эрик Уиллмс, П. Энг.
Бывший президент Superior Radiant Products Ltd.
Бывший председатель Объединенного подкомитета CSA по инфракрасным обогревателям

Как подключить инфракрасный теплый пол

На сегодняшний день в современных домах и квартирах довольно широко применяются нетрадиционные системы отопления.Они являются хорошими источниками тепла и помогают значительно снизить затраты на электроэнергию, что положительно сказывается на семейном бюджете. И именно поэтому так актуален вопрос «как подключить инфракрасный теплый пол». В этой статье рассмотрим, как правильно подключить ИК-пол.

Технические характеристики инфракрасного теплого пола

Прежде чем заниматься подключением данной системы отопления, следует разобраться в некоторых ее особенностях. ИК-характеристики:

  • Потребляемая мощность сорока пяти составляет 67 Вт / м2.
  • Ширина теплового удара пленки 50 см.
  • Максимально допустимая длина теплового удара пленки составляет восемь метров.
  • Питание — 220 В 50 Гц.
  • Температура плавления пленочного инфракрасного теплого пола — 130 С.
  • Содержание инфракрасных лучей в спектре излучения составляет 95%;
  • Длина ИК-луча составляет пять — двадцать микрометров.

Как подключить инфракрасный теплый пол — важность правильного монтажа

Теплое пленочное ИК-покрытие является альтернативным широко применяемым методом обогрева помещения любых параметров, питающимся от источника питания.В этой системе обогрев участка производится специальной пленкой (содержащей углеродную смесь), нагреваемой медными проводниками по бокам. Для того, чтобы не возникло проблем с подгоранием контактов, конструкция имеет защитное напыление серебром.

Для подключения теплого инфракрасного пола не потребуется много сил и затрат, важно лишь придерживаться определенных правил при укладке. Все этапы подключения Мы рассмотрим ниже и при их несоблюдении можно столкнуться с определенными поломками и неправильной работой системы.Причины проблем могут быть:

  • Нарушение норм монтажа электрических систем.
  • Неправильные расчеты по соотношению площади комнаты и самого теплого пола.
  • Применение при установке материалов, не предназначенных для оборудования такой системы отопления.
  • Нарушение этапов монтажа паро-теплоизоляционных слоев.
  • Используется при заливке стропильных смесей, не подходящих для пленочных ИК полов.
  • Неточный вызов провода электропитания и сечения по общей нагрузке.
  • Используется в качестве завершающего слоя материалов с низкой теплопроводностью. На такую ​​отопительную систему настоятельно рекомендуется наносить натуральные ковровые текстильные покрытия.

Статья на тему: Как поставить плинтус на линолеум: способы укладки

Если придерживаться всех этих простых правил и правильно подключить инфракрасный теплый пол, вы получите экономичную, прочную и надежную систему обогрева.

Как подключить инфракрасный теплый пол — ступеньки

Как уже было сказано выше, крайне важно соблюдать все правильные технологии монтажа теплой уличной системы, этапы которой:

  • Очистка от мусора и грязи, устранение неровностей, проверка горизонтальности. Помните, что монтаж теплого инфракрасного излучения осуществляется под чистой идеально гладкой поверхностью, с отклонением не более трех миллиметров. Если уклон больше — нужно будет устранить дефект в наливных полах.
  • Место для сверления терморегулятора. Вам необходимо выполнить вертикальное сверление настила пола до точки установки терморегулятора. Следующим шагом будет проделать отверстие под терморегулятор. Затем очистите поверхности от мусора и пыли. Обязательно подключайте питание к устройству от ближайшей розетки. Терморегулятор IR-пола подключается по той же технологии, что и другие типы электрических систем наружного отопления. Кабели заземления закреплены и не входят в контакт.
  • Укладка теплоизоляционного слоя. Могут применяться светоотражающие теплоизоляционные материалы или другие материалы. Помните, что толщина теплоизоляции составляла три — пять миллиметров. В этой межкомнатной двери будут отверстия для крепления тросов и замков с пленкой. Устанавливая слой теплоизоляции, соедините его строительной лентой.
  • Установка ИК пола. Положите пленку вдоль стены с термостатом (чтобы уменьшить длину кабеля).Диапазон кладки от стен должен составлять десять — двадцать миллиметров, от мощных утеплителей — около одного метра. Срезать покрытие можно только по тем светлым полосам, которые расположены между более темными тканями. Нужно уложить пленку, затем тщательно прокоптить соединение скотчем. Пленку нужно держать медными ТЭНами вниз.

  • Надежная изоляция торцов пленочного покрытия. Чтобы возникли проблемы с какой-либо жидкостью на теплом полу, следует очень качественно выставлять «голые» элементы в точках смены материала меди.Лучше всего это выполнять битумным материалом в виде пленки. Обязательно лазите по сегментам — зажмите теплоизоляцию в проделанных ранее отверстиях.

Статья по теме: как снять и прочитать показания счетчика электроэнергии

  • Установка хомутов. Прикрепите металлические зажимы к медным элементам без увеличения. Учтите, одна сторона зажима должна располагаться между медной полосой и пленкой. Зажимать провод снизу и сверху категорически не рекомендуется: можно повредить пленку, что приведет к быстрому обрыву теплого пола.

  • Цены на кабели и способ их встряхивания параллельно кабельным зажимам.
  • Монтаж проводов в теплоизоляционном слое.
  • Установка датчика термостата.
  • Подключение инфракрасного теплого пола и проверка его работоспособности.
  • Укладка звукоизоляционного слоя.
  • Укладка наружных покрытий.

Для закрепления посмотрите пару видео инструкций по установке.

Излучатели пола

Calorique


Калорийность пола

Система обогрева пола Calorique обеспечивает даже
комфортное тепло, пронизывающее комнату.С утеплением пола, а не
обогревают только поверхности и устраивают людей, а пол
подогревается до нужного количества, чтобы он был наиболее приятным для
идти дальше.


Обычная система отопления

Поскольку лучистое тепло не зависит от движения
большие объемы воздуха, пыль и загрязняющие вещества в воздухе и помещении
уменьшенный.

Системы лучистого обогрева пола

Calorique
чрезвычайно энергоэффективный. Домовладельцы во всем мире используют
системы обогрева полов не только из-за их повышенного уровня комфорта,
но также потому, что они потребляют на 20% меньше энергии, чем другие
формы отопления, так как вся тепловая энергия направляется в
жилое пространство, а не обогрев воздуха вдоль стен.
Теплые полы под полом
Система обогрева


Установлены элементы утепления

Идеально подходит для нового строительства и мест, где есть доступ
к перекрытиям пола возможна система утепления полов.
прикреплен между балками пола с небольшим воздушным пространством 2 дюйма (5 см)
между элементами и поверхностью пола.
Всего панелей 12
5/8 «в длину, все
валки на сердечнике 3 ‘, номинальный нагрев
толщина панели a 19 мил


Часто задаваемые вопросы

Сколько
мощность, которую использует система?
12 дюймов по центру: 6 Вт на панель (примерно 12.5 дюймов)
16 дюймов по центру: 10 Вт на панель
24 дюйма по центру: 15 Вт на панель
Сколько
стоит ли работать?
Обычная ванная комната размером 8 на 10 футов будет стоить
около 2 центов в день.
(При условии, что стоимость электроэнергии составляет 10 центов за киловатт-час.
расходы могут отличаться.)
Что
какое напольное покрытие я могу использовать?
Любое стандартное напольное покрытие, в т.ч.
твердая древесина, плитка, линолеум, кирпич и т. д.Проконсультируйтесь с

руководство по установке для определенных толщин и
комбинации.

Почему
у него есть воздушный зазор?
Это рассеивает тепло, заставляя его
более равномерно, а также позволяет теплу проникать в комнату из
под диваном, не будучи зажатым, что неэффективно.
Могу ли я
установить элементы прямо под плитку?
Могу ли я
нужно оставить доступ ниже элементов?
Могу ли я
нужно соединить оба конца элементов?
Почему
я хотел бы провести провод с обоих концов?
Защищает работу
элементы.Если, например, во время
ремонтные работы *, весь элемент будет продолжать
**
* Всегда отключайте питание элементов при выполнении
ремонтные работы пола или потолка под ним.
** Если шина разорвана, убедитесь, что разорванная шина
концы должны быть должным образом изолированы перед подачей питания на
система.
Сколько
усилители система использует?
Типичная ванная комната размером 8 на 10 футов
менее 2 ампер при 120 вольт.

Что следует учитывать перед установкой системы лучистого отопления — Бруни и Кампизи

Содержание:

  1. Что такое лучистое отопление полов?
  2. Разница между радиационной теплопередачей и конвекцией
  3. Современные системы лучистого отопления
  4. Различные типы лучистого теплого пола (RFH)
  5. Экономичная установка для водного лучистого отопления
  6. Электрические системы лучистого теплого пола
  7. Плюсы и минусы систем лучистого отопления

Ваши друзья сердечно приглашают вас посетить их новый дом.Вы так много слышали об этом, и они рады продемонстрировать это. Он находится в прекрасном месте, и когда вы подъезжаете, вы будете очарованы его потрясающим фасадом и поразительным ландшафтом. Первые впечатления надолго, и уже оставляет отличное.

Они открывают дверь, улыбаясь. Смотришь по сторонам, восторгаясь отделкой. Отличная концепция комнаты с высокими сводчатыми потолками и окнами в стиле Палладио. Великолепная люстра. Широкие плинтусы и толстые плинтусы. И эти этажи! Темный сланец в фойе и лиственные породы золотистого цвета повсюду.

Они берут ваше пальто, и вы выходите из обуви, готовясь к экскурсии. Тогда ты остановишься. Что-то ударяет вас, когда вы стоите на камне, а затем приближаетесь к деревянному полу. Они такие теплые! Ваши друзья продолжают улыбаться, наблюдая за вашей реакцией. Прежде чем вы сможете спросить, они ответят за вас. «Это лучистый пол с подогревом». Вы сразу почувствуете себя влюбленным в тепло и задумаетесь об установке системы лучистого отопления в собственном доме.

Существует так много информации о различных типах систем лучистого теплого пола — так много вариантов на выбор, так много доступных продуктов и так много причин, по которым следует использовать систему лучистого теплого пола.Вы можете зайти в Интернет, чтобы ознакомиться с вашими вариантами. Возможно, вы посетите домашнюю выставку и поговорите с подрядчиками о затратах на установку лучистого тепла в доме и преимуществах лучистого теплого пола.

Однако легко потеряться. Вы знаете, зачем использовать лучистый пол, преимущества лучистого теплого пола и взвесили плюсы и минусы лучистого тепла. Получить необходимую информацию об установке системы лучистого отопления в вашем доме может быть непросто.

Если это звучит знакомо, то прочтите и узнайте о различных типах систем лучистого теплого пола, установке системы лучистого отопления в вашем доме и о том, как пользоваться преимуществами лучистого теплого пола.

Что такое лучистое напольное покрытие?

Системы лучистого отопления существуют еще со времен римлян, когда они проложили сеть труб под мраморными полами и подключили их к системе горячего водоснабжения. Римляне использовали дровяной котел, за которым ухаживали рабы, и элементарную насосную машину для циркуляции горячей воды, которая согревала их каменные полы. В свою очередь, однородность тепла пола передавала тепло другим предметам в комнатах, включая людей.

За столетия сформировались и многие другие формы лучистого тепла.Некоторые из них работали хорошо, например, отдельно стоящие радиаторы для горячей воды, обычные в викторианских домах, а некоторые потерпели колоссальные неудачи — например, электрические излучающие панели 1980-х годов, встроенные в потолки и сожгшие их конструкции дотла.

Камины и отдельно стоящие дровяные печи являются примерами излучаемого тепла, как и те неприглядные электрические обогреватели для плинтусов, от которых так много ударов по лодыжкам. Широко использовались и другие устройства излучающего тепла, такие как керосиновые напольные устройства, которые назывались «обогревателями», и маленькие керамические коробки с электроприводом, которые до сих пор находятся под столами и оставляют пальцы ног поджаренными.

Но лучшей системой лучистого домашнего тепла всегда было эффективное использование полов в доме за счет использования широкой нижней поверхности в качестве единого нагревательного элемента. Это позволяет теплу естественным образом подниматься и нагревать другие объекты с помощью научного процесса излучения.

Разница между радиационной теплопередачей и конвекцией

Есть большая разница между теплопередачей излучения и другой распространенной формой отопления дома — конвекцией. За последнее столетие большинство домов в более холодном климате отапливались за счет конвекции, а не радиации.Конвекция — это процесс нагрева воздуха и обдува им помещения теплым воздухом для поддержания тепла полов, стен и потолков. В свою очередь, предметы в комнате, такие как мебель и люди, будут оставаться теплыми благодаря температуре воздуха.

Эти конвекционные обогреватели до сих пор широко используются и обычно называются «системами с принудительной подачей воздуха» — когда в печи есть центральный нагревательный элемент, через который обдувается воздух. Этот нагретый воздух затем распределяется по дому вентилятором по «воздуховодам» и циркулирует обратно в более холодном состоянии по другим воздуховодам, называемым «возвратным холодным воздухом».”Процесс повторяется и включается и выключается предварительно установленным термостатом. Топливом для этих печей с принудительной конвекцией обычно является нефть или природный газ, но некоторые из них также работают от электричества.

Системы лучистого обогрева становятся все более популярными, особенно в последнюю четверть века, по мере того, как технологии развиваются, и системы доказали свою надежность и экономичность. В отличие от конвекционного отопления, системы лучистого тепла не имеют воздуховодов и циркуляции воздуха. Излучающие системы зависят от теплопередачи по инфракрасному научному принципу, используемому солнцем, который называется «линия обзора».Эти невидимые электромагнитные инфракрасные волны исходят от нагретой тепловой массы. В замкнутой системе, такой как дом, более теплые предметы естественным образом нагревают более холодные до тех пор, пока не будет достигнут баланс.

Современные системы лучистого тепла

Современные домашние системы лучистого отопления в полной мере используют инфракрасное излучение. Безусловно, наиболее распространенным источником радиатора в доме является масса пола. Радиаторы могут быть локально расположены в одном месте, например, на полу в ванной комнате, или могут быть установлены по всей подповерхности пола в доме.Другие радиаторы все еще используются, такие как настенные панели или обогреватели для плинтусов, хотя потолочные радиаторы почти всегда используются в коммерческих целях, таких как склады.

Причина сохранения низкого уровня тепла проста. Тепло поднимается, поэтому имеет смысл расположить источник тепла на уровне пола. Это позволяет теплу естественным образом проходить через «горячую» зону, то есть от пальца ноги человека до области головы. Все объекты в горячей зоне достигают равновесия по температуре после того, как система лучистого тепла проработает некоторое время, включая людей.Исчез этот прилив горячего воздуха при включении печи и внезапный выброс прохлады при ее выключении.

Инфракрасный принцип лучистого теплого пола прост, и причины, по которым следует использовать систему лучистого теплого пола, ясны. Однако понимание различных типов систем лучистого отопления для вашего дома и установка лучистого тепла в доме немного сложнее.

Различные типы лучистого теплого пола (RFH)

Существует две основных формы лучистого теплого пола, или RFH, как его называют в домашнем отопительном бизнесе.Один из них — гидронный, когда вода или определенная жидкость, такая как гликоль, нагревается каким-либо типом топливного котла, а затем циркулирует по системе трубопроводов под поверхностью пола. Во-вторых, электрические радиаторные панели, где электрические провода или кабели, проложенные под полом, вынуждены сопротивляться току, который затем выделяет тепло.

Эти две формы лучистого теплого пола просты по своей концепции. Однако обе системы имеют широкий спектр различных компонентов для разных приложений, а также различные марки и особые требования к установке.Одно из важнейших соображений при выборе той или иной формы лучистого напольного отопления заключается в том, используется ли оно в новом строительстве или при ремонте.

Модернизация систем лучистого отопления

Для всего дома сложно, если почти невозможно, модернизировать систему лучистого отопления в существующем доме, особенно гидравлическую систему. Локальные системы лучистого теплого пола для использования в одной или нескольких комнатах, таких как ванные комнаты, кухни или прачечные, легко ремонтируются с помощью электрического лучистого обогрева пола.Это намного более рентабельно в меньшем масштабе. Более крупный ремонт, например, пристройка к дому, может подойти для крупномасштабной и более дорогой гидравлической системы.

Выбор типа системы лучистого теплого пола зависит от области применения. Во-первых, необходимо знать, как работает каждый тип системы лучистого обогрева пола, прежде чем принимать решение об установке лучистого тепла в доме.

Системы водяного теплого пола

Из двух основных систем RFH покупка и установка водяных водяных лучей является самой дорогой из двух.Это в первую очередь связано с количеством компонентов и количеством квалифицированного персонала, необходимого для создания и установки гидравлической системы RFH.

Гидравлическая система водяного отопления для пола работает путем нагрева воды или гликоля в бойлере и перекачивания ее через лабиринт труб, установленных под полом или прямо на поверхности пола. Тепло от горячей воды передается массе пола, а затем излучается посредством теплопередачи к другим предметам с твердой массой, таким как стены, потолки, мебель и люди.Он не полагается на нагрев или движение воздуха для передачи тепла.

Гидравлическое напольное отопление обычно устанавливается во время нового строительства, так как техническая проблема прокладки системы под существующим полом во время ремонта огромна. Кроме того, в долгосрочной перспективе гораздо более экономично установить гидравлическую систему по всему дому, а не выделять ее на более мелкие участки.

Экономичная установка для водного лучистого отопления

Основными компонентами системы водяного теплого пола являются:

  • Котел — это металлический резервуар, содержащий нагревательное устройство, обычно называемое горелкой.Гидравлические баки бывают разных емкостей в зависимости от размера дома.
  • Жидкость — жидкая среда, которая должна нагреваться и циркулировать в качестве источника теплопередачи. Обычно используется свежая водопроводная вода из-за ее стоимости и доступности. В некоторых системах используется некоррозионная и незамерзающая жидкость, например гликоль.
  • Топливо — которое требуется сжигать для получения энергии, которая может быть передана жидкости. Обычные источники топлива — природный газ, нефть и электричество.Древесина иногда используется в сельской местности, где ее много, а иногда дровяные котлы подключаются к вспомогательному электрическому блоку.
  • Трубопровод — протянутый по всему полу в качестве распределительной системы. Металлические трубы используются редко из-за длительного воздействия коррозии. Практически во всех водяных системах обогрева полов сегодня используются пластиковые трубы диаметром ½ дюйма, изготовленные из полиэтилена PEX или сшитого полиэтилена. PEX очень гибкий, не ржавеет и выпускается большой длины, что позволяет плести трубы PEX с минимальным количеством стыков или без них.
  • Насос — необходим для создания давления в системе и поддержания постоянного низкоскоростного потока теплой жидкости по всему дому. Большинство, если не все, насосы — электрические.
  • Коллектор — это распределительный центр для труб, позволяющий независимо отапливать различные зоны дома. Эта функция энергосбережения позволяет уменьшить поток в определенные части дома, чтобы в незанятых местах было прохладнее.
  • Термостат — это регулятор температуры для водяного водяного обогрева пола.Обычно каждая зона имеет независимый термостат, подключенный к коллектору. Программируемые термостаты часто используются как энергосберегающие устройства.

Помимо компонентов системы водяного теплого пола, существует три различных метода установки распределительных труб:

  • Трубопровод в плите устанавливается непосредственно внутри пола и залит бетоном. Это обычное явление для цокольных этажей или одноэтажных перекрытий и лучше всего подходит для нового строительства.Между землей и трубами и поверхностью бетонной плиты помещается жесткая изоляция. Затем поверх плиты кладется окончательная отделка пола. Это может быть керамическая плитка, линолеум, ламинат, ковер или искусственная древесина твердых пород.
  • Трубопровод в стяжке также заключен в бетон, хотя это приложение работает в сочетании с существующим основанием, таким как другая бетонная плита или система деревянных балок пола. Трубопровод PEX укладывается в виде плетеной ткани, а затем поверх труб заливается тонкая, не относящаяся к конструкции стяжка из легкого бетона специальной конструкции.
  • Трубопровод под деревянную обвязку — это трубопровод, в котором гидравлический трубопровод устанавливается в системе деревянных балок пола под деревянным основанием и финишной отделкой пола. Это обычно используется на втором или третьем этаже и использует полости в балках пола, избегая при этом затрат, веса и дополнительной толщины заливки бетона в стяжке. Чтобы сделать водяную систему обогрева полов под деревянным покрытием эффективной, области балок изолированы стекловолокном, а фольговые отражатели установлены под трубами, чтобы направлять тепло вверх.

Электрические системы теплого пола

Другая распространенная и популярная форма системы лучистого теплого пола основана на сопротивлении электрическому току. Это гораздо больше подходит для изоляции определенных областей дома, таких как ванные комнаты и кухни, поскольку стоимость установки электрической системы по всему дому будет непомерно высокой, не говоря уже о постоянных расходах на эксплуатацию.

Электрические системы лучистого теплого пола

Системы электрического лучистого отопления лучше всего подходят для деревянных полов, а не для установки на бетонные плиты.Если плиты не изолированы очень хорошо, энергия, требуемая от электрического сопротивления, может быть настолько значительной для нагревания бетонной массы, что эффект масштаба исчезнет.

Электрические системы лучистого теплого пола хорошо подходят для ремонта, хотя они обычно используются при строительстве новых домов. Электрические системы бывают самых разных применений и сложности. Некоторые из них такие же простые, как тонкие электрические коврики. Они похожи на электрическое одеяло, которое можно положить на поверхность существующего пола и подключить к розетке.Затем сверху кладут другой коврик или коврик для эстетики.

Другие электрические лучистые напольные обогреватели устанавливаются прямо в пол, а над ними размещается другой готовый продукт. Керамическая плитка — самый распространенный материал, за которым следует ламинат. Большинство систем постоянного электрического лучистого теплого пола предназначены для конкретного применения. Изготавливается шаблон и передается поставщику, который разрабатывает продукт для точного размера и формы обогреваемой площади.

Все электрические системы лучистого обогрева пола используют один и тот же принцип сопротивления электрическому току для создания тепла, а затем передачи его тепловой массой на готовый пол.Затем тепло распространяется на окружающие предметы. Не все электрические системы лучистого отопления используют одинаковый подход к дизайну или материалам.

Самыми популярными электрическими системами водяного теплого пола являются:

  • Электрические коврики — это тонкие пластины или гибкие одеяла, которые содержат плетеный узор из крошечных проводов сопротивления, обычно из нихрома или меди. Эти прокладки уже существуют в размерах для стандартных областей, но обычно изготавливаются на заказ для конкретной области установки.Это может включать точные углы, изгибы и карманы в зависимости от формы пола.
  • Кабели без жилы — Кабели без жилы поставляются в предварительно отмеренных рулонах определенной длины. Их подают через небольшие пластиковые опоры, прибитые к полу, а затем покрывают тонким слоем раствора.
  • Изолированные кабели — Изолированные кабели также поступают заранее подготовленной длины, затем укладываются прямо на пол и заливаются тонким бетоном.

Независимо от типа системы электрического лучистого теплого пола, все они изготавливаются на заводе, чтобы оставаться цельными, а не разрезать, сломать или изменить.Любое вмешательство или прерывание подачи электроэнергии делает систему неработоспособной. Это один из недостатков установки системы электрического лучистого отопления. Однако при условии, что они установлены правильно и о них должным образом позаботились, вероятность возникновения проблем мала.

Системы электрического лучистого теплого пола содержат меньше компонентов, чем водяные системы лучистого отопления. Компоненты системы электрического лучистого теплого пола:

  • Провода сопротивления — Электричество течет по этим проводам, встречает сопротивление и нагревает их.Размер, длина и конструкция проводов зависят от производителя и конкретного применения. Как правило, в небольших приложениях используются провода меньшего размера, и их дешевле покупать, устанавливать и эксплуатировать.
  • Коврик или закрепка — это то, что разделяет провода сопротивления и удерживает их на равном расстоянии. Маты поставляются с этим типом готовой системы, тогда как кабели или провода, проложенные на полу, покрываются обычным бетонным раствором, который смешивается и наносится на стройплощадке.
  • Температурный датчик — Температурный датчик обычно устанавливается на конце проводов и посылает сигнал обратно по проводам на термостат.
  • Термостат — Регистрирует заданную температуру и регулирует поток электроэнергии, регулируя температуру в соответствии с настройками помещения. Электрические термостаты системы лучистого теплого пола подключаются отдельным проводом к кабелю или подкладке и монтируются на стене. Некоторые модернизированные электрические системы лучистого тепла имеют дистанционные и программируемые термостаты.

Плюсы и минусы систем лучистого обогрева

Если вам все еще интересно, зачем использовать системы лучистого теплого пола, важно изучить плюсы и минусы лучистого тепла. Преимущества лучистого теплого пола намного перевешивают недостатки, особенно в системах лучистого отопления, установленных по всему дому на начальном этапе строительства. Установка лучистого отопления в вашем доме — это серьезное вложение, которое следует рассматривать в долгосрочной перспективе. Сюда входят как водяные, так и электрические системы водяного теплого пола.

Преимущества систем лучистого теплого пола:

  • Комфорт — Несомненно, самым большим преимуществом лучистого тепла для пола является равномерное распределение тепла и комфорт, который он обеспечивает обитателю. Здесь нет горячих и холодных точек, и равномерное тепло не отнимает естественное тепло тела.
  • Экономичный — В долгосрочной перспективе лучистое отопление пола обходится дешевле, если начальные капитальные вложения окупятся.
  • Тихий — Теплый пол без шума.Здесь нет вентиляторов, порыва воздуха или рычания печи.
  • Clean — Благодаря отсутствию движущегося воздуха для распространения пыли и взвешенных в воздухе частиц, лучистое тепло для пола обеспечивает исключительно чистую среду. Он идеально подходит для людей, страдающих аллергией или затрудненным дыханием.
  • Без воздуховодов — В то время как конвекционные печи с принудительной подачей воздуха должны работать вместе с воздуховодами для теплого и холодного воздуха, излучающие системы полностью размещены в полу. Здесь нет коробок или подвесных потолков, за которые можно было бы нырнуть или попытаться замаскировать.
  • Низкие затраты на обслуживание — У излучаемого теплого пола мало или совсем нет движущихся частей, которые нужно обслуживать или выйти из строя. Сюда входят фильтры, которые нужно заменить, и воздуховоды, которые нужно очистить.
  • Лучшее размещение мебели — Нет напольных или настенных регистров, с которыми нужно было бороться, что делает расстановку мебели более универсальной.

Если посмотреть на плюсы и минусы лучистого тепла, то у системы лучистого теплого пола практически нет недостатков, кроме первоначальной стоимости установки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *